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ABSTRACT

Computer real-time graphical simulations are in great demand. They save time, money

and effort in the development of new hardware and training resources. Only recently have

advances in computer hardware and software achieved a level which allow realistic simu-

lations to run in real-time.

The phenomena we wish to simulate is increasingly complex. This in turn means that the

software is becomidng increasingly difficult to develop and maintain. The object oriented

paradigm is one methkod of analysis and impleinentation which addicsses the problems of

increasing complexity.

This thesis examines the object oriented method by applying it to the problem domain of

simulating the performance and handling characteristics of a U. S. Navy Deep Submer-

gence Rescue Vehicle (DSRV). It performs an analysis of the key abstractions and imple-

ments the resulting design using the object oriented facilities of the C++ computer lan-

guage.
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I. 1 I'RODUCTION

Converging trends build a compelling argument that computer graphical simulations

will be central to iuture hardware procurement and systems development. Both the ci' ihan

and the military venue are affected. The trends driving this ascendancy are economic and

technological: economic from dwindling resources and surging requirements, and

technological from the forming critical mass between advances in computer hard%% are and

the possibilities of new software paradigms. This work explores the possibilities offered by

this critical mass and the ever increasing demand for computer simulations through the

implementation of a real-time, networked, graphical simulation of a submerged Deep

Submergence Rescue Vehicle (DSRV).

ThRee principAL areas are addressed.

"* Faithful simulation
"• Object oriented analysis, design and implementation
"* Networking interface

A. MILITARY PROCUREMENT AND TRAINING

Computer simulations certainly are not new. However. their recent marriage with high

performance graphics workstations opens new possibilities for insight and efficiency. The

military long encouraged computer driven trainers to mitigate the high cost of fielding

tactical hardware in the training environment. Indeed, much of the early work in computer

graphics originated from the early military aviation trainers [Rheingold9l 1.

Today, the stakes are much higher than the periphery represented by hardware trainers.

The government and industry are both trying to reduce costs without loss in effectiveness.

Unending cost overruns in military procurement are no longer defensible. Large weapons

systems no longer enjoy the luxury of being indispensable and, by extension, impervious



to the budget axe. There is strong support in the United States Congress to require a full

modeled simulation of all future weapons acquisitions before prototyping and full scale

production. Economic efficiency demands new methods. Those methods involve

computers in general. and graphical simulations in particular.

B. THE "SOFTWARE CRISIS"

This; term refers to the ever increasing complexity of software as we turn to software

solutions for ever more difficult problems. Many tools are employed to manage complex

software. The object oriented paradigm addresses the issues of software complexity and

software maintenance. It is argued that a fundamental paradigm shift is needed to make the

next quantum step in overcoming complexity is software systems.

C. GOALS

The goal of this thesis is to develop a realistic mathematical model of the handling

characteristics of the DSRV and apply the model to a graphical. interactive simulation of

the DSRV. In addition, it is desired to make the sumulation table driven (by coefficients of

performance) for easy application to other submerged vessels and bodies.

Another goal is to develop the simulation within the framework of the object oriented

analysis and design methodology and to implement the simulation using the object oriented

capabilities of the C++ language. This approach is taken in the spirit of using these tools to

alleviate the software crisis. These tools directly lend themselves to extensibility and code

reuse.

D. CHAPTER ORGANIZATION

The intellectual activity of this project may be divided broadly into two categories: the

underlying abstraction upon which the project rests, and the computer programming which

implements the abstraction. This thesis reflects this structure. The first part deals with the



underlying abstraction. The second part deals with the programming implementation

details.

This chapter outlines the motivations for this project, the perspective from wiich the

project was undertaken, and a brief discussion of the organization of the thesis. The

underlying abstraction is considered in Chapters 1I and I1H. Chapter II discusses the highest

level of abstraction for the project, the conceptual model. It explains the conceptual basis

of the DSRV and the underlying physics which makes up the physically based nature of the

project. Chapter III extends the conceptual model into mathematical detail. It unifies three

abstractions into the modei:

"• Newtonian kinematics,
"* Newtonian dynamics, and
"* Principles of naval architecture.

It explains the details of the mathematics and discusses the simplifying assumptions to

make the model managable.

Chapter IV discusses the object oriented paradigm and how it was used in the analysis

and design of this simulator. Chapter V completes the analysis and design by describing the

implementation as it was conceived in the C++ language. Chapter VI discusses the network

issues. It shows where the network interface is designed into the system and discusses some

practical issues for the DSRV model.

Chapter VII covers the user interface and controls. It talks about the visual facilities

and where they may be extended. Finally, Chapter VIII discusses the conclusions about this

implementation and the areas where it might be extended.



II. CONCEPTUAL MODEL

The DSRV model is a comprehensive, physically based model which attempts to

capture realistic handling and performance characteristics. Toward that goal, the model

uses stability and handling characteristics derived by the Department of the Navy, Naval

Ship Research and Development Center (formerly the David Taylor Research Laboratory)

from DSRV model and vehicle testing.[NSRDC69]

The Newtonian force-based paradigm of motion is used in the DSRV model. Other

paradigms could have been used; Hamiltonian, based on system energy (least action)

[Finney90], Lagrangian, based on generalized or canonical coordinates for constrained

motion problems, and others. However, the Newtonian paradigm is the basis of most ship

stability information (curves of form), is well understood, is intuitive and carries well

across applications. [Barze192]

The DSRV mission presupposes a submarine which is in distress and in need of rescue.

This application uses a submarine as a target vehicle. The submarine model is a simple

model which differs from the full, more complex model used for the DSRV. It is not

physically based as is the DSRV model, and derives its motion from a simple integration

between current and commanded positions.

A. i HE DSRV MODEL

Computer graphics animation relies heavily upon kinematic motion--motion which

considers position and velocity, but does not consider mass and force [Barzel92]. Object

motion in this case is a simple computation of incremental position changes over time from

a known velocity. On the other hand, dynamics modeling considers mass and force

relationships in object motion. From these relationships, new velocity values may be

derived which then are used in the kinematic sense to determine incremental changes to
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object position. This is termed forward kinetics andforward dynamics [Foley87] and is the

framework for the DSRV model.

1. Kinematics

To elaborate, kinematics is not concerned with the causes of motion. It is strictly

,oncemed with the relationships between position, velocity and acceleration as a function

of time. It is often discussed using the analog of an abstract point which moves in a frame

of reference but has no intrinsic properties of its own.

This abstract point moves in three dimensions. Therefore, convention holds that

position, velocity and acceleration all may be represented in terms of components along the

reference axes. Each axis component may itself be a parametric equation of time. In this

case, the three component parametric equations are expressed in vector form and are termed

vector-valued functions or simply vector functions of parameters and time [Finney90].

A kinematic rigid body is the next level of abstraction after the kinematic point.

The kinematic rigid body expands the point abstractions of position, velocity and

acceleration to include body orientation, body angular velocity and body angular

acceleration. Descriptions of these values are conveniently expressed in terms of three

dimensional components encapsulated in vector form. These components also may be

expressed as parametric equations of time and, therefore, are vector functions.

In summary, the motion in three dimensions of a kinematic rigid body may be

described in terms of vector functions of time which encapsulate the following body

attributes:

"• position
"• velocity
"• acceleration
"• orientation
"• angular velocity
"* angular acceleration.



These vector functions may be integrated over time to yield their corresponding position

and attitude values. These values then are used in the graphics function calls to display the

object in three dimension space.

The next step is to define the parametric equations which make up the vector

functions. For the DSRV model, the source is Newtonian mechanics and rotational

dynamics.

2. Mechanics And Rotational Dynamics

The fundamental abstraction of the DSRV model is that of a submerged rigid

body subjected to influencing forces and torques. This abstraction derives from the

hierarchical development of Newton's laws of motion. The submerged rigid body derives

from a rigid body, which derives from a point mass. At each level of abstraction more

descriptions are added to define the relevant characteristics of the body. For the purposes

of the conceptual model, all defining elements are assumed to be encapsulatcd, into the

concept of the rigid body.

a. Rigid Body Components

Mechanics and rotational dynamics deal with the physical concepts of mass.

force, momentum and energy [Weidner75]. The one dimensional point mass abstraction is

described as a mass and a velocity. Momentum is defined as the product of mass and

velocity. Force is defined as the time rate of change of momentum, which may be rewritten

as the product of mass and acceleration.

A point mass may move in a frame with three degrees of freedom: the three

components of linear motion in three dimensions. In this case, the point mass is described

as a scalar quantity, mass, and a directional velocity vector. Linear momentum is a vector

quantity defined as the scalar multiplication of mass with the velocity vector. Linear force

is a vector quantity defined as the time rate of change of linear momentum, which may be

rewritten as the scalar multiplication of mass with an acceleration vector.
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The rigid body abstraction adds another three degrees of freedom

representing orientation. Orientation may be represented as a vector quaritity of rotations

about the frame axes needed to define an orientation. A whole series of definitions arise out

of the rigid body abstraction which mirror their point mass counterparts. These definitions

are. with their linear counterparts in parenthesis; moment of inertia (mass counterpart),

angular velocity (velocity), angular momentum (linear momentum), and torque (force).

Summarizing, a non-minimal list of descriptive characteristics for a rigid

body would include the following (vector values, unless otherwise specified):

"• Mass (scalar)
"* Scalar velocity (scalar)
"* Position
"* Velocity
"• Acceleration
"• Linear momentum
"• Linear Force
"• Orientation
"• Angular velocity
"* Angular acceleration
"* Angular momentum
"• Torque.

It should be noted that there are more derived properties of rigid bodies, such

as work, kinetic energy and power. They certainly would be appropriate for further

refinements of the conceptual model, especially for building constraint relationships and

for extending the rigid body abstraction to articulated objects [Badler9 11. These properties

are not used in this analysis, however.

b. Newton's Second Law Of Motion

Newton's Second Law of Motion states that the time rate of change of an

object's momentum is equal, in magnitude and direction, to the vector sum of all external

forces acting on the object. This is the superposition principle of force, which means we

may replace the vector sum of all acting forces with an equivalent, single resultant force.
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This law is of supreme importance to the DSRV model and is the basis upon which all

analysis and implementation rests.

It is important to note, also, that this law unites the two aspects of the physics

involved in the model: the kinematics and the mechanics. If the forces acting on the rigid

body are known and the proper accelerations are calculated (which will be the case for the

DSRV model), then the velocity and displacement may be projected and used to update the

graphical representation of the DSRV.[Weidner75]

For this model, the relevant forces act in six degrees of freedom, as discussed

above. Therefore the model is concerned with both linear and rotational forces. All forces

and torques will be resolved into a net force and a net torque which will be used to derive

velocity, position, angular velocity and orientation.

c. Relevant Forces

The DSRV is modeled as a submerged rigid body. The relevant force are

composed of those which arise from the nature of the submerged environment and those

which arise from the inherent DSRV controls.

The environmental forces include the primary vertical forces, gravity and

buoyancy. Gravity acts downward from the body center of gravity and is a function of mass

distribution. Buoyancy acts upwara from the body center of buoyancy and is a function of

displaced volume. For marine vehicle stability, the center of gravity is below the center of

buoyancy. These two vertical forces are not alwdys colinear. When they are offset from

each other they produce a moment arm which induces a torqu- and an attendant rotational

motion. The forces are self correcting and will seek an equilibrium in which they are

colinear and opposite in sign.

The hydrodynamic forces are simplified into an apparent drag force and an

added mass term. Apparent drag is proportional to the square of the vehicle velolity relative

to its medium, and to the cross-sectional area normal to the relative velocity vector. It is an

opposing force with a direction vector opposite to the relative velocity vector.

8



Added mass terms account for the fluid reaction force of the surrounding

water to the acceleration of the body through the medium. Added mass does not have the

same value for all directions of acceleration[Healey92]. For complex bodies, such as the

DSRV, these terms are difficult to compute. Consequently, the DSRV model uses a

simplifying assumption that the DSRV added mass term is approximated by an

appropriately dimensioned sphere. [Healey92]

Control forces include propulsion, control surfaces (planes) and thrusters.

The DSRV uses a shrouded propeller with two degrees of freedom for primary thrust in

cruising mode. This model approximates the shrouded propeller using the classic

submarine propulsion arrangement of a propeller with one rotational degree of freedom. a

rear mounted rudder for yaw control and a stern plane for pitch control. Like the shrouded

propeller, the propeller/plane configuration operates at a displacement from the center of

gravity. For any angles diverging from the longitudinal axis, the propulsor will introduce a

moment arm and an attendant torque.

For hovering mode, the DSRV uses four thrusters- two forward and two aft.

They are arranged so that they are parallel to the transverse axis and the vertical axis. When

activated, they apply forces through a moment arm relative to the center of gravity and

induce a torque. They are easily implemented in the DSRV model as forces acting through

the appropriate moment arms.

Unlike the forces discussed so far, ocean current does not act as a force on a

rigid body. Rather, it is the result of a velocity vector attached to the medium in which the

submerged rigid body is operating. Indeed, it is noticeable only from the perspective

provided by the world inertial reference frame. In the ocean reference frame, current does

not exist. Consequently, ocean current is a vector subtraction from velocity terms which

have been translated from body to world coordinates. It should be noted that the model does

not account for accelerations induced by uneven pressure distributions associated with

wave action and vortex effects.

9



Summarized below are the forces which have been discussed and which are

considered relevant for the DSRV model. It certainly is not a complete treatment of all the

forces and effects which contribute to the control and stability of the DSRV. However,

within the constraints of computational efficiency, realism, and real-time. interactive

simulation, it is considered sufficient to provide an acceptable degree of handling realism.

The forces are summarized as follows:

"• Vertical forces
Gravity
Buoyancy

"* Hydrodynamic forces
Apparent drag
Added mass

"* Control forces
Propulsion
Control surfaces
Thrusters

"* Ocean current

B. THE SUBMARINE MODEL

The submarine model is a simple kinematic model which assumes a consistent

response to throttle and rudder commands. Longitudinal velocity and yaw rate are each

modeled as separate first order linear differential equations. Numerical integration is

accomplished using the Heun integration method. An ideal autopilot is assumed to regulate

velocity and yaw to a commanded value using an invariant time constant. [McGhee9 11

C. SUMMARY

The DSRV is modeled using the Newtonian force based paradigm of motion. Relevant

dynamic forces may be reduced to single force and torque components. From these

components the kinematic problem may be solved and position and velocity of the body

determined. The mathematical model is derived in the next chapter from the conceptual

model discussed above.

10



III. MATHEMATIC MODEL

A. FRAME OF REFERENCE CONVENTIONS

Any detailed discussion of physical objects reacting in three dimensions must

establish a frame convention. Unfortunately, there is no universal frame convention for the

types of physical interactions this model represents. Indeed, many related disciplines adopt

conventions which differ from one another. Two conflicting conventions are at work in this

thesis. The graphics hardware of the Silicon Graphics (SGI) Reality Engine uses a

convention of coordinate axes for object displays which differs from the standard

convention used in most vehicle dynamics models; thus, there is a need to resolve this

conflict.

1. Engineering Covention

a. Global Reference Frame

To consider the details of vehicle motion in the context of Newtonian physics.

it suffices to define an arbitrary inertial reference frame with three orthogonal axes. This

global frame establishes the reference by which the motions of interacting objects are

measured. References then are made to body coordinate positions, attitudes and their

derivatives.

b. Body Reference Frame

The standard body coordinate convention for aircraft and marine vehicles is

defined as a right handed, three-dimension Euclidean space. The orthogonal coordinate

axes are aligned relative to the vehicle body. The X axis is placed along the vehicle

longitudinal axis, positive in the direction of the front of the vehicle. The Y axis is normal

to the X-axis and is positive to the right as seen looking along the X axis. For example, in

II



an aircraft the right wing would point in the positive Y direction. The Z axis is positive

down, through the undercarriag t uf the vehicle. [Healey92]

2. Graphics Hardware Convention

a. Global Reference Frame

The Silicon Graphics Reality Engine is the hardware platform on which this

model is implemented. The SGI uses the convention of a right handed, three-dimension

Euclidean space. The orthogonal coordinate axes are aligned relative to the display screen.

The horizontal axis is the X axis, positive from left to right. The vertical axis is the Y axis,

positive from bottom to top. The Z axis is perpendicular to the screen, positive in the

direction toward the viewer.

b. Body Reference Frame

The programmer defines body reference frames. However. the viewing

graphics calls are relative to an eye point which is defined in global coordinates. Object

location and orientation also is specified in terms of global transformations and rotations.

In the interest of simplicity and code readability, therefore, the programmer is inclined to

define a body frame consistent with the SGI global reference frame (i.e., body reference

axes initially parallel to global reference axis).

3. Reconciling The Conventions

The mathematical model is derived using the standard engineering conventions

discussed, above. All matrix transformations and rotations assume an orthogonal, global

inertial reference frame which defines a world coordinate system. Similarly, all objects

interacting within the global frame are assumed to have an orthogonal, local reference

frame which defines a body coordinate system for the object.

Reconciling the reference conventions between the graphics hardware and the

mathematical model occurs in the graphic system function calls. Appropriate sign

12



transformations are used to make the graphic motion directionally consistent with the

mathematical model.

B. THE DSRV MODEL

We now consider frames of reference from a different perspective, Newtonian

physics. Newtonian kinematics and dynamics are inseparable from the concept of frames

of reference. We intuitively think in terms of reference frames when considering the

relative motiun of moving bodies. If two bodies move in parallel directions, to each other,

they appear to be mutually stationary. To an outside observer in a different reference frame.

both appear to be moving with respect to the observer's reference frame.

One only need consider the difference in perceived motion between a passenger in a

moving car on a highway looking at another car moving at the same speed in the next lane.

and the perception of the same scene by a pedestrian standing at the side of the road. To the

passenger, the cars are relatively stationary. To the pedestrian, both cars are moving quite

fast with respect to his own speed.

This difference in reference frames is critical to understanding the Newtonian physics

underlying the DSRV model.

1. Kinematics

a. Linear Concepts

In kinematics, we model body motion based on a 'fixed" reference frame.

This frame is arbitrarily chosen and becomes the benchmark against which all further

motion and kinematic relationships are measured. For the kinematic model, we call this

reference frame the world coordinate system and define it to be an orthogonal, right-handed

coordinate system with coordinate axes X, Y, and Z, and origin (0, 0, 0)

Position of any point within the world coordinate system is expressed as the

triple (X, Y, Z) which uniquely identifies the point. Considering unit vectors along each

axis, position may be expressed as a vector of the three components (Eq 1).
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R = [XI+YJ +ZK] (Eql)

By convention, this equation is often expressed in vector form using the

scalar components of each unit vector (Eq 2).

R , (Eq 2)

In a similar fashion, velocity of a point with respect to the world coordinate

system may be expressed in terms of its components along the world coordinate axes (Eq

3).

d = (Eq 3)

As discussed in Chapter 11, the DSRV model is based upon the rigid body

concept. The rigid body is an extension of the point mass abstraction and introduces the

concept of orientation and angular derivatives (angular velocity and angular acceleration).

This allows a model with six degrees of freedom.

b. Rotational Concepts

There are several methods useful for expressing orientation and angular

derivatives. This model uses the Euler angle convention to express angular relationships.

The use of quaternions is popular for this purpose, particularly in aircraft simulations

[Cooke92]. Quaternions overcome a major limitation of Euler angles. Euler angles produce

a singularity when one angle of the rotation reaches 90 degrees; for example, when an

aircraft achieves vertical flight. [Healey92]

Tlh.e DSRV does not achieve such steep trim angles in its operations so this

drawback for Euler angles does not affect the simulation. Euler angles have the advantage

of common use for such applications and are well understood. For these reasons the Euler

angle convention is used in this simulation.
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A new coordinate system is defined for a rigid body using the conventions

discussed earlier. This system is termed the body coordinate system. Starting with all three

body axes aligned with the world coordinate system, three successive rotations about the

body axes define the orientation of the body. These rotations are the Euler angles psi. thera

and phi ('P. 0. 0) , about the body :, Y, and x axes. respectively. They are commonly know n

as azimuth. elevation and spin[Healey92j. They uniquely define the orientation of the body

with respect to the world coordinate system.

Focussing now on the body coordinate system, there are three angular rates

which describe body angular motion but which are separate and distinct from Euler angles.

These are yaw. pitch and roll rates, respectively. Rather than relating body orientation to

world coordinates, these quantities are exclusively concerned with the inertial frame of the

body. They are extremely important to rigid body dynamics. Rate gyros are installed on

rigid bodies to measure yaw rate, pitch rate and roll rate (p, q, r) . Througi. various

transformations these quantities are transformed from values measured in body coordinates

to Euler angle rates in world coordinates. The latter rates are in world coordinates and

therefore can be integrated to update the body's position and orientation. These are the

values which are used as arguments for the graphics system calls.

c. Rotational Transformations

The link between motion variables sensed in body coordinates to their

corresponding equivalents in world coordinates is achieved through geometric

transformations using Euler angles. The forward transformation is considered the

transformation from world to body coordinates. The reverse transformation is considered

the opposite. from body to world coordinates. The reverse transformation is most useful in

this DSRV model and is derived from successive reverse transformations about the world

coordinate axes using Euler angles (Eq 4).

T- 0. = T-1(W/)T-'(0)T-'(4) (Eq4)
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Completing the triple matrix product of the component transformation

matrices yields the extended form of the reverse transformation matrix used in this model

(Eq 5).

i, s V ,os cws y sin 8 si 0- siwnv os cos v si 8, o -,- s in si 0-•

T-'(0.(i.y) = stccosHf l n s in 3 sin0fs + cosigcos0 su)sLnmJk osO-cosy sin0 (Eq 5)
L -Sfl sOsbcoso0 cos cos4 ]

The goal for kinematics in this model is to describe in world coordinate terms,

the motion of the DSRV rigid body as measured in body coordinate terms. In particular. the

simulation must apply these transformations to linear and angular velocity as seen in body

coordinates. For linear velocities this is accomplished using the transformation matrix and

applying it to body velocity terms (u, v, w) (Eq 6).

!I= T (w, 0, 0) 1 (Eq 6)

For angular velocities, a similar transformation is used to relate body angular

rates (p. q, r) to world coordinate Euler angle rates. Shown below are the extended forms

of these equations (Eq 7).

(sin) + rsino)

cos0

o = qcoso - rsin4) (Eq 7)

= p + qsinotan0 + rcos4)tan0

Together, the world coordinate linear and angular rate equations ((Eq 6) and

(Eq 7)) form the basis for the kinematic model. These equations are integrated with respect

to time using numerical integration methods to derive DSRV position and orientation

values.

2. Mechanics And Rotational Dynamics

The model must establish a means of deriving body velocity values. It employs

Newtonian physics to derive these values. The fundamental building blocks are
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summarized in Table 1. They relate familiar translational concepts to their rotational

counterparts[ Healey92].

TABLE 1: NEWTONIAN MECHANICS EQUATIONS

Linear Rotational

Mass m Moment of I = 2rr
Inertia

Velocity V Angular W
Velocity

Linear p = my Angular L = x rxmv-)
Momentum Momentum A--

Acceleration a Angular
Acceleration

Force XF = mv Torque t = rxF

Newton's 2- dp Newton's 2J dL
Law 1F-at- Law a=i

:F =ma =Ia +wxL

While most of the vector variables are fairly intuitive from their linear

counterparts, the variables for moment of inertia are quite different. The use is analogous

to the property of mass. However, while mass is a scalar value representing an intrinsic

property of a particle and is independent of the motion of the particle, moments of inert;a

depends on both the object's mass and on the distribution of the mass relative to the axis of

rotation [Weidner75]. For uneven distributions of mass or for an axis other than the

symmetrical axes, the computations for moment of inertia can be complex.

The DSRV model makes several simplifying assumptions;

"* the center of gravity is located at the origin of the axes of symmetry of the body
(this assumption is only for calculations for moments of inertia),

"• the body rotates about the symmetric axes, and
"• the body is modeled as a solid cylinder, long dimension along the body x axis.
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Typically the moments and products of inertia are arranged in a 3 x 3 matrix

called the inertial tensor matrix. For our assumptions, the products of inertia are zero, and

the moments of inertia - arrayed along the principal diagonal - are computed as shown in

Equation (8). [Weidner75l [Badler9l]

I -I L7
.• lxv -x .

= ~~-lvz = I.

Y: i -jrYn =(Eq X )

I = frldm = fpr2dv

/ = -mr Iy- = I:: = -ml
2 12

where:m = DSRV mass

r = DSRV radius

Newton's second law, the superposition principle of force and torque, brings

together all the applied forces and torques so that they may be treated as a single force and

torque affecting the body.

Two, three-dimensional vector equations for force and torque form the basis for

describing the translational and rotational motion of a rigid body [Badler91]. Equation (9)

shows the relationships.

F=ma-mpax(b+mcox (wxpc)
xa~wxI~o(Eq 9)

T = I(b+mPGxa+o•×loi

where PG = vector to center

a. Vertical Forces: Gravity And Buoyancy

Gravity acts on a body, pulling it to the earth's center. Weight is the vertical

force caused by gravity acting on a body in world coordinates. Its magnitude is the product

of mass and gravity. The force is aggregated to act at a point in body coordinates. This point
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is not normally co-located with the origin of the symmetric axes so it acts at a displacement

from the body reference point.

Similarly, buoyancy acts at a displacement from the body reference point. It

is a force proportional to the displaced volume of the body. For a submerged body in

equilibrium, weight and buoyancy are colinear vectors of equal magnitude acting in

opposite directions.

Weight and buoyancy are fixed in body coordinates. When the body

undergoes attitude changes. weight and buoyancy are no longer colinear and therefore

induce a righting moment about the metacenter (a term from naval architecture which is

used as a reference point for describing interactions between weight, buoyancy). The

righting moment causes the body to right itself by restoring the equilibrium of a colinear

weight and buoyancy vector. [Comstock67]

Gravity and buoyancy act from locations in body coordinates, but their

interactions are with respect to the world coordinate system (world "up'" and world

"down"). In world coordinates they act in the vertical axis so their components are strictly

in the world Z axis. Equation (10) shows this relationships for weight and buoyancy.

W = 0I +OJ + (mg)K (EqI1)

B = Ol+OJ- (pV)K

The world components then must be transformed to their components in body

coordinates for use in the equations of motion. Equation (11) shows the total vertical force

and moment vectors which are used in the equations of motion.[Healey92]
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-sinO 1
f (W-B) cos0sin¢]

V-sine] -OOS F -sine E 1

g PG X cos~sinq1 -B3P"xIX cos~sino
coscosocos

mg~ ~ t'-o WP [Cos 0c sL:Bp cs~o

where: p; = vector to center of gravity from reference origin

b. Hydrodynamic Forces

There are several considerations for modeling hydrodynamic forces. The

body may be either stationary or in motion. The fluid also may be either stationary or in

motion. For the purposes of this simulation, the hydrodynamic forces are modeled for a

body in motion in a stationary flow.

Hydrodynamic forces come from a modification of the pressure distribution

around the surface area of the body. The modification is proportional to body velocity and

acceleration. Two components make up the total hydrodynamic forces, drag and added

mass.

Drag is proportional to vehicle velocity and is governed by the relationship

in equation (12). The coefficient of drag varies with flow conditions, but is generally taken

to be Cd = 1.2. The projected frontal area per unit length, D, is determined using the

simplifying assumption that the frontal area is a sphere of radius equal to the width of the

DSRV.

p
Fdrag = - CdD (u) Iul (Eq 12)

where p = sea water density

Added mass force is the effect of fluid mass that is accelerated in reaction to

the normal acceleration of the vehicle. It is proportional to fluid density, the vehicle
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projected area in the direction of motion, and vehicle acceleration. Equation (13)shows the

relationship. The combined drag and added mass equation for linear motion is shown in

Equation (14).

am du (Eq 13)

FX= -Fdrag - Fam (Eq 14)

c. Control Forces

Control forces are generated to provide some control of the vehicle as it

operates in its designed medium. Control forces may come from many different installed

motive generating equipment. Typically a submerged vehicle is outfitted with a propulsor

of some kind and some combination of control planes and thrusters. Control over weight

and buoyancy is typically maintained through the use of a ballast and trim system.

PROPULSION: The thrust force of a propeller is related to the following:

"* water density, p,
"* propeller diameter. D,
"* speed of advance, Va,

"* gravity, g,
"* rpm, n,

"• fluid pressure, p, and
"* fluid viscosity, pt.

The contribution of these factors may be determined experimentally and

encapsulated into a nondimensional coefficient for thrust. Using the principle of similitude.

the ccefficient may be dimensionalized to the fiW scale model and applied to thrust

calculations. The nondimensional coefficient equation for thrust is shown in equation (15).

The dimensionalized coefficients and their relationship to thrust and the moment created

by propeller thrust is shown in equations (16) and (17).I[Comstock67][NSRDC67]

Kthrusi - Fpropeller (Eq 15)pnZD

Fpropeller = Cthrustn 2 (Eq 16)
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Mpropeller =- Xmoment - armFpropeller (Eq 17)

CONTROL PLANES: As mentioned earlier, the DSRV does not have

control plane surfaces. However, the shrouded propulsor, which has two degrees of

freedom, behaves approximately as a screw-rudder- stemplane combination when operating

in cruise mode. Using the rudder-sternplane model has the advantage of modeling the more

traditional control surface configuration for submarines, making the model more easily

extensible to other, more conventional submarine vehicles.

The only purpose of a control surface is to induce a moment on the vehicle

to cause it to rotate and orient to a desired angle of attack. Besides the desired control

forces, vortex shedding, drag forces and frictional forces are also induced. The total

resultant forces may be resolved into a lift component (normal to the direction of the water

stream incident to the plane surface), a drag component (parallel to the direction of motion

of the water stream), and the desired control component, normal to the longitudinal axis of

the vehicle. These forces may be expressed in nondimensional form so that tow tank test

results may be extended to a full scale model.[Comstock67]

The DSRV model ignores the drag and lift forces induced by the rudder and

models only the desired control force normal to the vehicle longitudinal axis. The control

force is proportional to the water density, the cross-section plane area and the square of

water velocity. The moment is the product of the control force and the displacement of the

center of pressure of the control plane from the center of gravity. The control force and

moment equations are shown in Equations (18) and (19), respectively.

F CpATU 2 (Eq 18)

M = FyX (Eq 19)
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THRUSTER: There are four thrusters on the DSRV, two longitudinal and

two transverse as shown in Figure 1. They are used by the DSRV in hovering mode when

0 
0 D

Aft Forward

Figure I DSRV Thruster Arrangement

speeds are less than 2 knots. Thrusters are subject to the same factors as the propulsor.

discussed above. They are modeled using the same equations but with their own

corresponding coefficients.

d. Ocean Current

Ocean current acts with respect to the fixed world coordinate system. The

DSRV maneuvers within the moving medium. so the effects of current are not sensed with

respect to the vehicle body coordinate system. Therefore, current is an addition to the

components of vehicle velocities which have been transformed to world coordinates (Eq

20).

Y1  = T I(,1N , r v+ U j (E q 2 0)

3. Extended Form Of Vector Equations

The DSRV mathematical model has been discussed in terms that invoke matrix

shorthand notation. In the implementation, the model does not manipulate variables in

vector form. Rather, the vector equations are extended to their long form and the

components are calculated separately. Table 2 shows the long form of the equations of

motion.[Healey92]
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TABLE 2: LONG FORM RIGID BODY EQUATIONS OF MOTION

SURGE

Xf =m (ra -vrr+wrq-XG(q2+r 2 ) + Yv (pq - r) + :a (pr +q)

+ (W-B) sine

SWAY

Yf = m[vr+urr-WrP+xG(pq+r) -YG(p+r) +zG(qr- P)]

- (W-B) cos0sinO

HEAVE

Zf = m I[Vwr - Urq + VrP + xG (pr - e) +Y(qr+p) - (p2+q)]

- (W- B) cosOcoso

ROLL

Kf = I.xp + (1 - 1,) qr + lxy (pr - l) - lyz (q 2 _ r 2 ) _ ixz (pq + r)

+ m [YG (v- Urq + VrP) - ZG (Vr + Urr - WrP) I

-(YGW- yBB) cos~coso + (ZGW - z-B) cos0 sine

PITCH

Mf = 1,4l+ (Ix - z) pr - lxy(qr+ P) + Jyz (pq -i') +Ix (p2_ r 2

-m IxG (V'r - arq + vrp) - zG ("r - Vrr + wrq) I

+ (xGW-xBB) cos0cosO + (ZGW- zBB) sinO

YAW

Nf =I + (I - I) pq - Ix, (p 2 _ q 2) _ iz (pr + 4) + Iz (qr - P)

+ m I xG (vr + Urr - wrp) - YG ("r - Vrr + Wrq)

- (xGW -xBB) cos0sinb - (yGW- yB) sinV

These equations do not explicitly present either added mass of control force and

moment effects. Instead, these factors are all contained in the right hand side of each

equation.
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4. DSRV Properites And Coeficients

The concept of similitude has been mentioned several times with little

explanation. Mechanical similitude is a well documented method in naval architecture for

extrapolating ship model basin test results to the properties of full scale vehicles. Through

a process of dimensional analysis, engineers are able to measure the forces and torques

experienced by small models when moved and rotated through a tow tank. The

experimental results are reduced to non-dimensional coefficients using various dimension

normalizing techniques. Typically the dimensions are normalized for an appropriate power

of vehicle length or area, depending on the computations and dimensional analysis. From

nondimensional coefficients the full scale coefficients may be determined by applying the

appropriate dimensional quantity from the full model (i.e.; length', length', lengthW.

etc.).[Comstock67j

C. THE SUBMARINE MODEL

The submarine model uses two simple equations to determine vehicle velocity and

yaw rate (course). The equations model a perfect autopilot to regulate speed and course.

The autopilot is assumed to regulate velocity and course changes using a fixed time

constant, Ta"* Equations (2 1) and (22) govern the response of the submarine model.

l
-= (uC-u) (Eq 21)

a

r = -(r .r) (Eq 22)
Ta

Body velocities and angular rates are subjected to the same transformation from body

to world coordinates as discussed for the DSRV model. Numerical integration is

accomplished using the Heun integration method.[McGhee75]

D. SUMMARY

The equations of motion for a submerged rigid body define a mathematical model of

the behavior of the DSRV. Factoring in the relevant control forces provides a realistic
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model for characteristics. The model must be implemented in a programming language and

tied into the graphics system calls to provide a real-time graphical simulation. The analysis

and design of the software structure to implement the model is the subject of the next

chapter.

26



IV. OBJECT ORIENTED ANALYSIS AND DESIGN

A. THE OBJECT ORIENTED PARADIGM

We speak of analysis, design and programming as distinct activities. In large, non-

trivial software projects, these activities have been "codified" into a framework for dealing

with complexity. Conventional structured analysis, as articulated by Yourdon

[Yourdon89], is one example of such a framework. It is based upon the capabilities

provided by common imperative languages, such as the language C. Booch. among others,

discusses a framework based upon the object oriented paradigm [Booch91 ].

The driving force for articulating effective software development methods comes from

the yet unresolved software crisis. Software is notoriously expensive, delivered late and

often full of bugs. While development tools have been created over the years to address

these probiems, they have been met with new demands from software developers who are

addressing ever increasingly complex problems. The tools also must become more

complex to deal with the direction of software development. [Cantu92]

Booch states that software is inherently complex for four essential reasons:

"* complexity of the problem domain,
"* management of the development process,
"* inherent flexibility of software, and
"• the discrete nature of digital systems.

Complexity of the problem domain refers to the unending quest to apply computer

solutions to higher level problems. Just as one level becomes achievable from computer

advances, demands are made to extend computer solutions one abstraction higher.

Managing the development process addresses the ever increasing size of software.

Computer solutions made possible by several hundred lines of code may be understood by

a single programmer. Today's solutions run into the realm of a million lines of code which

no single programmer can expect to fully grasp. Therefore, large programming applications
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will take many programmers and, with turnover in employment, will likely finish with few

if any of the original programmers still on the team.

The inherent flexibility of software stems from its ability to express virtually any kind

of abstraction. This quality is a double edged sword because programmers are largely

forced to construct all the component pieces of software with little or no standardization

from one application and one programmer to another.

The discrete nature of digital systems refers to the fact that computer programs are a

collection of discrete variable states. With large systems, the combinatorial explosion of

these states makes it virtually impossible to guarantee that all state combinations may be

tested. The testing requirements for a 100 percent tested system in any large software

application would take several hundred or thousand years to completely test. Clearly, this

situation is unacceptable and other methods must be used to ensure the veracity of the

software.

So. the problem is to devise effective tools to deal with the issues of large software

system development. The object oriented paradigm is such a tool. Unlike the classical

formulation of a tool, the object oriented design philosophy is what is often referred to as a

"..paradigm shift": a wholly new way of thinking about the problem domain and of designing

software in the hope that this new intellectual approach will provide a framework for

skirting the pitfalls of earlier software development processes.[Booch9l]

B. OBJECT ORIENTED ANALYSIS VS. LANGUAGE

It is important to draw a distinction between the analysis method and the language

which implements the design. The two are different, though related. The analysis method

is the way in which the problem domain is analyzed and the solution is conceptualized. It

is, itself, a high level conceptual model of analysis. Many analysis models have been

employed. The five main types are summarized in Table 3.[(Booch9l]

The implementation language exists apart from the analysis style used. The language

facilitates the implementation of the style. It must provide the facilities to implement the
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TABLE 3: MAIN ANALYSIS MODELS

STYLE ABSTRACTION

Procedure - oriented Algorithms

Object - oriented Classes and objects

Logic - oriented Goals. predicate calculus

Rule - oriented If - then rules

Constraint - oriented Invariant relationships

style without too much trouble and without too many impediments to the concepts endemic

to the style. The object model demands a language which provides four major elements.

The absence of any one of the elements obviates the object oriented nature of the model.

These elements are,

"* Abstraction,
"• Encapsulation,
"• Modularity, and
"• Hierarchy.

The C++ language provides facilities which support these elements. It should be noted

that C++ also supports the procedure oriented paradigm. Therefore, an object oriented

implementation must consciously seek out and use the object facilities of C++. The DSRV

model uses the object model of analysis and the object oriented facilities of the C++

language to implement the model.

C. THINKING IN HIERARCHIES

According to Booch, humans deal with complexity by dividing abstract ideas into

hierarchies. Hierarchies are simply an ordering of abstractions. Most areas of human

intellectual analysis have been divided into hierarchies. the internal structure of the

computer, the study of botany and zoology, the decomposition of physics into discrete

concepts, and the nature of man's social institutions to name a few.[Booch9li]

In contrast. the evolution of programming paradigms follows the sequential nature of

the programs themselves: Functional decomposition. algorithmic structure, function calls,
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loop statements, etc. The real promise of the object oriented paradigm is the unity between

how humans think and the programming paradigm used to analyze and implement the

abstractions of human thought.

It is no surprise, then, that the object model draws heavily upon hierarchical

relationships. In particular, two interrelated conceptual hierarchies are used, the 'kind of'

hierarchy and the "part of' hierarchy. The "kind of' hierarchy refers to the class structure

where a class is a description of the internal state and interface of an entity. This hierarchy

is often thought of as a generalization/specialization hierarchy where superclasses are

generalizations of subclasses which are specializations of an abstraction.

The "part of' hierarchy refers to the object structure where an object is an instance of

a class (which may, itself, encapsulate other classes). In this hierarchy, the class is the

higher level of abstraction compared to the encapsulated classes.

If hierarchies are central to the object model, then the programming language must

have the facilities to support hierarchies. There are three fundamental facilities which must

be present:

* Classes,
* Inheritance, and
* Polymorphism[Cantu92].

Classes allow abstractions to be encapsulated and modularized. Inheritance defines a

relationship among classes which allows the class to use the structure or behavior of one or

more other classes (for single and multiple inheritance, respectively). Booch states that

programming without inheritance is "distinctly not object - oriented" and is termed

programming with abstract data types. Polymorphism allows objects of differeia ,:asses to

use different member functions with the same name, where the classes are related by a

common super class. Polymorphism is made possible in a language by the presence of the

inheritance facility and dynamic binding.
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D. PROBLEM ANALYSIS AND DESIGN

Analysis and design are discussed as distinct activities, but it is acknowledged that the

distinction is often blurred and that they are more realistically considered as an uneven

continuum of activity [Booch9 I]. In this project, analysis is considered to be the activity of

identifying the key abstractions from the problem domain and the interactions among the

abstractions. Analysis establishes an architecture for the key abstractions. It is the

intellectual "construction" of a point-of-view which solidifies and gives context to the key

abstractions.

The design activity is a "decomposition" phase in which the key abstractions of the

problem domain are considered in relation to each other and in relation to abstractions

outside the immediate problem domain. For example, in this application there is an object,

a graphical simulation window, which displays the DSRV. Outside of the DSRV

simulation problem domain, this window exists in the context of its own hierarchy of

graphical windows and higher graphical objects. Placing this object in its correct context

within a larger world domain is a proper activity for the design of object oriented systems.

1. Levels Of Analysis And Granularity

Analysis of the problem domain starts at the highest level of abstraction and

successively considers the abstractions which support the higher levels. This top down

approach is well understood and lends itself to the object oriented analysis approach. At

successively deeper traversals of the abstraction tree, the granularity becomes finer. There

are no hard and fast rules for defining the correct level of granularity. So, the analysis stops

at an arbitrary level at which it appears the analysis arrives at an abstraction simple enough

to need no further explanation.

2. Highest Level - The Simulator

The DSRV simulator exists by itself at the top of the abstract conceptual tree. It

is the robt node. It encompasses all the ideas, concepts and assumptions about simulating
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the performance and creating the appearance of the DSRV. This simple abstraction is

shown in Figure 2.

Figure 2 The Simulator Abstraction

3. Second Level - Internal Structure

The second level explores the structure of the simulator. The simulator must

orchestrate the movement of the objects to be simulated. This involves controlling both the

mathematical models and the graphical displays. The simulator also must be able to

respond to commands from the operator. Thus, the second level of abstraction decomposes

as shown in Figure 3.

WINDOW

DSRV

Figure 3 Second Level Simulator Object Abstraction
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The Simulation entity controls the various functions necessary to conduct the

simulation. These functions include timing the pace of the simulation, directing the display

when the simulation is running and taking action on operator inputs when prompted. The

Window abstraction is one of a controlling entity which orchestrates the various

components of the display. It is responsible for window menus, background objects (such

as sea bottom, light model and any non-moving objects) and the moving objects of the

simulation after their positions have been updated. The vehicles are responsible for their

own performance and handling characteristics. As they receive change instructions they

must respond according to their defined nature.

Booch discusses a "using" relationship among objects. He generalizes three roles

within this relationship:

"* Actor - operates on other objects but is not operated upon,
"• Server - never operates on other objects, only acted upon by others,
"• Agent - both operates and is operated upon.

At this level, the Simulation is an actor, the Simulation Window is an agent, and the

Simulated Vehicles are servers.

4. Third Level - Fine Grain Objects

This is the last level of decomposition in this problem domain.The Simulation and

the individual vehicles are sufficiently described in the second level of the abstraction. The

Window abstractions needs further definition. At this level, the lowest level, The Window

abstraction introduces the view entity which represents different aspects and viewpoints

into the virtual environment. Figure 4 shows this level of the analysis.

E. CLASS HIERARCHIES

As mentioned above, a class hierarchy represents a "kind of' relationship. In the

DSRV model, three principal classes are analyzed in the context of their location in a class

hierarchy, the DSRV, the Submarine and the Simulation Window.
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Figure 4 Third Level Simulator Abstraction

1. DSRV And Submarine

The DSRV and the Submarine both derive along the same class hierarchy. For this
implementation, a pure physics hierarchy was considered first. The hierarchy follows the

progression of classical Newtonian physics. Figure 5 shows the progression. Starting from

the physics abstraction of a point mass, the hierarchy follows to succeeding derived sub -

classes of rigid body and submarine vehicle. From submarine vehicle, the class DSRV and

Submarine both derive to their own classes.

The OFF Drawable Object class is inherited by the Submarine Vehicle class. This

allows all successive sub-classes to be used in a graphical environment.

2. Simulation Window

The Simulation Window class derives from the Window class. The Window super-

class encapsulates the fundamental properties and behavior needed to define a graphical

window. The Simulation window sub-class inherits these basic properties and provides

additional data and functionality for providing simulation specific behavior. Figure 6

shows this relationship.
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Rigid Body

Submarine Vehicle

Figure 5 DSRV and Submarine Class Hierarchy

Window

Simulation Window]

Figure 6 Simulation Window Class Hierarchy

F. OBJECT HIERARCHIES

Object hierarchies reflect a "part of" relationship. In this application there are three

object hierarchies of interest: the DSRV, the Simulation Window and the DSRV Simulator.

1. DSRV

The DSRV object uses components which influence its submerged handling

characteristics. These components are the propulsor, a ballast system and four thrusters.

Other components would be appropriate for defining the capabilities of a DSRV (energy

system, sensors, etc.) but they are not directly the focus of this simulation and are therefore

not included. Figure 7 shows the DSRV object hierarchy.

35



Lateral :Fw~d

Ballast System Trse

Figure 7 DSRV Object Hierarchy

2. Simulation Window

hierarchy. They are the requisite views for display and the non-moveable objects which

make up the virtual environment. The relationship is reflected in Figure 8.

Figure 8 Simulation Window Object Hierarchy
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3. DSRV Simulator

The DSRV Simulation is the highest level object in the design. It is composed of

objects which allow the DSRV Simulation to operate. These objects include the DSRV

object, the Submarine object and the Simulation Window object. Figure 9 shows the

relationship.

Simmulation

Figure 9 Simulation Object Hierarchy

As expected, the Simulation object hides virtually all of the implementation

details. This is in keeping with the guidelines of information hiding and encapsulation

which are fundamental to the object oriented analysis and design principle.

G. SUMMARY

The DSRV simulation is the problem domain for the analysis and design phase of the

software development. The key abstractions from the problem domain are considered and

placed in context with each other through an analysis of their hierarchical class and object

hierarchies. The next task is to implement the analysis and design in an appropriate

programming language. This is the subject of the next chapter.
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V. C++ OBJECT IMPLEMENTATION

A. AT THE TOP, THE MAIN() PROGRAM

The maino program is extremely terse, in keeping with the object oriented discipfine.

The DSRVSimulation is the highest level of abstraction and is represented as its own

class. The program, main() simply instantiates the DSRVSimulation and tells it to run, as

seen in Figure 10..

#include "DSRV_Simulator.H'

void main()

DSRVSimulation D;
D.RunSimulationo:

Figure 10 Program main()

B. HIGHEST LEVEL CLASS - DSRVSIMULATION

This class is also straightforward. It reveals a little more of the design decisions as

would be expected at a slightly lower level of the simulation abstraction. In Figure 11, the

DSRVSimulation creates three objects. The DSRV-obj, avalon, is the principle object of

the simulation and, as will be seen, is the most complex. The Submarine-obj, thresher, is

the target submarine for the simulation. It has limited maneuverability in the simulation. In

truth, the submarine will not move at all as it is the target of the DSRV and is assumed to

be in distress. The SimulationWindow object, sim-window, is responsible for lighting,

viewpoint and the display of static and maneuverable objects.
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Notice that the avalon and thresher are instantiated as member variables of a class

#include 'DynamicObjs.H"
#include *SimulationWindow.H"
Oinclude "SubVehicleObjs.H"

class DSRVSimulation

public:
DSRV_Simulation ••

-DSRVSimulationU;

void RunSimulation);

private:

// simulated objects
DSRVobj avalon;
Submarine-obj thresher;

/ / window obj

SimulationWindow simwindow;

Figure 11 Class DSRVSimulation.

DSRVSimulation but their graphical display is controlled by the object, simwindow.

Simwindow must be-provided with the identity of these two moveable objects because

simwindow does not instantiate them. This was a design decision to separate the

mathematical nature of avalon and thresher from the graphical nature. The two aspects,

graphical and mathematical still reside within the same object, but simwindow may call

the Draw() member function after simwindow is provided with the identity of the vehicles

through pointer references.

C. THE DSRV_OBJ CLASS

The previous chapter discussed the class and object hierarchies for the DSRV object.

The DSRV participates in both forms of hierarchy. The class hierarchy starts with the

abstraction of a point mass. Point mass uses one of two multi-purpose structures.

ThreeVector and ThreeMatrix (self-explanatory). Rigid body derives from point mass. In

turn. SubmergedVehicle derives from rigid body. Each successive class inherits from the
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super class using the inheritance mechanism of C++. Class rigid body shows this

inheritance mechanism well in Figure 12.

class RigidBody: public PointMass, public Torque

public:
RigidBodyu;
-RigidBody);

void set-inertia (ThreeVector, ThreeVector,
ThreeVector•;

void setc.rient (double, double, double);

void set-ang-vel (double, double, double);

void setang-accel (douLle, double, double);

ThreeMatrix get inertia (;

ThreeVector get-orient ();

ThreeVector get-ang-vel (;
ThreeVector getang accel (;

virtual void fwdkinematics (long);
virtual void fwd-dynamics (long);
virtual void reverse-kinematics (;
virtual void reverse dynamics ;

virtual void update();

protected:
ThreeMatrix inertia;

ThreeVectororient;
ThreeVectorang-vel;
ThreeVector angaccel;

Figure 12 Class Rigid Body

PointMass and Torque are both inherited by RigidBody. These class definitions can be

found in Appendix E. Inheritance allows the sub-class to inherit member data objects and

member functions. This is code reuse, an efficiency the C++ language encourages.

Combined with virtual functions and dynamic binding, the language encourages

polymorphism, another powerful tool for the programmer.

Note the virtual functions for kinematics and dynamics. They allow sub-classes to

redefine the functionality, if necessary. This is an example of polymorphism in action.
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SubmergedVehicle specializes the rigid body concept to the submerged environment.

It introduces the concepts weight, buoyancy and ocean current. These concepts have

particular meanings with respect to Newtonian physics. Information hiding is a key

ingredient to the object model and it is in this class that the implementation details of these

physics concepts are encapsulated.

The Submerged Vehicle class has other interesting properties that are useful, as seen

in Figure 13. It diverges from inheriting only physics concepts, to inheriting the class

class SubmarineVehicle : public RigidBody,
public OFFDrawableObj

public:
SubmarineVehicle));
SubmarineVehicle(char *);

-SubmarineVehicle);

void addweight (double);
void addbuoyancy (double);

void setweight (double);
void setbuoyancy (double);
void setsea-current (double, double,

double);

double get-weight
double get-buoyancy (;

void readyOFF_file)) (OFFDrawable_Obj::

readyOFFObj (;);

protected:

double weight;
double buoyancy;
ThreeVector seacurrent;

Figure 13 Class SubmarineVehicle

properties of an OFFDrawableObj. The Object File Format (OFF) is a useful, object

oriented set of utilities for quickly designing, modifying and displaying complex graphical

objects. This level of inheritance demonstrates multiple inheritance where the
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specialization class assumes properties from indirectly related super classes. This is a

powerful tool for developing robust software application solutions.

As an aside, it should be mentioned that network super classes also tie in at this level.

They are not shown in Figure 13 but will be brought out in the next chapter when

networking the simulator is discussed.

The class DSRV-obj and Submarine.obj both inherit from class Submerged Vehicle.

The DSRV-obj is the more interesting of the two. Figure 14 shows the publicly visible

declaration of the class. SubmarineVehicle is a super class, and DSRV-obj inherits its

class DSRV-obj : public SubmarineVehicle
friend class DSRVSimulation;

public:

DSRV-obj();
DSRVobj (char *);

-DSRV-obj ();

void setrudderangle (double);
void setsternplaneangle (double);
void increment-propulsor-rpm (double);
void stoppropulsor ();

void toggle_fwd_transverse_thruster (int);
void toggle_afttransversethruster (int);
void togglefwd_verticalthruster (int);
void toggleaftverticalthruster (int);

void update(;
void Drawn;
void setimage(OBJECT*);

OBJECT* get_image );

int ballast-pump-is-on o;
int seavalveisopen();

Figure 14 Class DSRV obj, Public Members

abstraction, including the physics, graphics and network capabilities. DSRVSimulation is

a class which works closely with SubmarineVehicle. For efficiency, it has been afforded

direct access to Submarine Vehicle members through the C++friend relationship. The
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friend construct is not directly a hierarchical issue in terms of "kind of' (class) and "part

of' (object) hierarchies.

From the listed member functions, it is clear that DSRV_obj is composed of sub-

objects. Figure 15 shows the private members which define the object. The listed member

private:

Ballast-System ballast;
Thruster *fwdvertical_thruster;
Thruster *fwd-transversethruster;
Thruster *aftverticalthruster;
Thruster *afttransversethruster;
Propulsor *propulsor;

double dr, ds;)
double u, v, w;
double p, q, r;
double xpos, vpos, zpos;
double phi, theta, psi;
double xx[13];
double M[7] [7], Mi[7][7];

void invert-matrix (double *, double ", int);
double trapezoidintegration (int,

double [1] ,double ));

Figure 15 Class DSRV obj, Private Members

functions provide the interface to the component objects which make up the abstraction of

the DSRV. Notice in Figure 15 that the DSRV-obj encapsulates its own abstraction plus

the abstractions BallastSystem, Thruster and Propulsor. By declaring objects of these

classes as member objects of DSRVobj, the "part of' relationship is fulfilled.

D. THE SIMULATION WINDOW CLASS

The Simulation _Window class encapsulates the abstraction from the analysis and

design activity dealing with the chores of producing the graphical representation of the

simulated objects. As noted earlier, the DSRV object and Submarine object are created by

the DSRV_Simulation class object which is not concerned with the details of how the

objects are displayed, only with the timing. Accordingly, the SimulationWindow is given
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the identity of the simulated objects in the form of pointers which then may be used to

invoke the Draw() methods of the individual objects. As seen in Figure 16, the

SimulationWindow object has a public member function which allows the identity of the

simulated objects to be made known to the SimulationWindow called PassDrawObp).

class SimulationWindow public Window

public:
simulationwindow U;

-SimulationWindowU;

void PassDrawObj(DSRV-obj *, Submarineobj ;

. define virtual functions from class Window
void evaluate-menuselectionr ;

void DrawWindow (;

private:
viewSelect viewselection;
boolean selectgrid;

DSRVUobj *dsrv;
Submarineobj *sub;
OBJECT *light-obj; // OFF objects
OBJECT *ref-obj;
OBJECT *floor;

static float fog(5];

// define virtual functions from class Window
long makethemenus( ;
void processmenuhito ;

Figure 16 Class SimulationWindow

This member function takes address arguments which are assigned to internal member

pointers.

Also note that SimulationWindow redefines inherited member functions,

evaluatemenuselection(), DrawWindow (), makethemenus('), and processmenuhitr. This

is possible through polymorphism afforded by the virtual function definitions in the

generalized super class Window.

The full class definitions and implementations are found in the appendices.
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E. MATH MODEL APPLICATION

The C++ code which implements the mathematical model was tailored from a

simulation of the Autonomous Underwater Vehicle (AUV) written in C fMarco9 11. The

state variable structure and general algorithm were very helpful. The AUV control,

propulsion and handling coefficients are markedly different from those of the DSRV and

therefore were not transferrable.

F. SUMMARY

The C++ object implementation is created from the design decisions made earlier in

the analysis and design process. The implementation details adhere to the design by using

the object oriented facilities of the C++ programming language. In this manner, the

development process creates an application which is true to the object paradigm and easily

extensible. The flexibility of this methodology is demonstrated by the ease with which the

classes for the network interface are tailored to the DSRV simulator in the next chapter.

45



VI. NETWORK ISSUES

A. NETWORK STUB

Although the DSRV simulation is not networked in its current form, the whole concept

of the simulation depends upon an eventual tie-in to a networked environment. Indeed, the

network, aspect of the simulator is part of the total analysis and design activity. Therefore,

the network stubs are included in the simulator architecture through an object hierarchy

relationship in the SubmergedVehicle class. Recall that this is where the graphics and

physics abstractions were also brought together.

The network architecture follows the model developed for DARPA by the Department

of Computer Science at the University of Central Florida [Blau92]. This architecture is an

object oriented networked environment called the Virtual Environment Real-time Network

(VERN). VERN is written in the C++ language using the object model, which makes it

ideal for this simulation application.

VERN establishes a class hierarchy as seen in Figure 17. The leaf nodes are abstract

classes which must be made object classes through inheritance. In particular, concrete sub-

classes must be declared for AbstractPlayer, AbstractGhost, and AbstractState.

The DSRV simulator declares two such classes, Network-Player and NetworkGhost.

They are the stubs designed into the architecture for a functional network interface. They

must be expanded into a fully integrated structure in a future extension of the simulator. The

AbstractState class is not represented with a stub because the full state information is

encapsulated in DSRVobj. This too must be expanded to integrate fully into a network.

Under the VERN network model, all moving objects in the virtual environment have

a source node. This node spawns the object and keeps track of its detailed state information.

This is called a "Player" object. The Player also maintains a "Ghost" object. The Ghost

maintains a dead reckoning solution for the dynamic object. The Player is responsible for
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comparing the detailed model with the Ghost model and initiating a message packet to the

network if an arbitrary error threshold is exceeded.

Each node on the network also maintains a Ghost for each dynamic object. It is

identical to the Player's Ghost with the same dead reckoning functionality. Remote node

Ghosts receive corrected position and velocity data from the Player when the Player

determines that the appropriate error thresholds have been exceeded.

O bject •

Clock

AbstractState

3DRouter

AbstractVERNObj

AbstractPlayer Abstract(host

Figure 17 VERN Network Class Hierarchy

The network class stubs with nminimal member function definitions are shown in

Figure IS.
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class Network_Player
public:

Network_Player));

Network_Player(char *n);
-Network_Player );

void set_error tolerancetdouble, double, double);
void processMsg U;

void computeNextState(double, double, double);

private:

char *name;
ThreeVector error-tolerance;

class NetworkGhost
friend Network-Player;
public:

Network_Ghost );
-NetworkGhost));

void sendupdate(;
void receive-update();
void computeNextState~float);

void update-state() (};

protected:
ThreeVector net-position;
ThreeVector netvelocity;

Figure 18 Network Class Stubs

B. NETWORK ERROR THRESHOLDS

Typically the Player object will use a positional error threshold to determine when it

is appropriate to inform all Ghosts to update their mini-state information. Ten percent of

body length is a common threshold for issuing an update message packet. This works fine

for relatively fast moving objects, such as land vehicles and aircraft. The DSRV moves

slowly in relation to such active objects and may move for quite some time before

48



exceeding the threshold. Indeed, the DSRV operates for long periods in hover mode

making small corrections to position and attitude.

Most networks have a time threshold for communications. If a network object issues

no messages in a preset interval, the object is considered dormant and may be killed or

removed from the address list. The slow moving DSRV may fall prey to this algorithm and

so should issue an update message, say every five seconds, for a seven second cutoff

window. This would be built into the Network-Player class

C. MULTIPLE CONCURRENT VIEWS

The DSRV simulator can take great advantage of a networked environment. It already

has multiple views installed for the operator. These views would be helpful in using the

simulator as a training tool. The operator would control the DSRV from the view within the

DSRV. An instructor or evaluator would monitor the approach and maneuvering expertise

of the operator from an external view.

Further, multiple users could be networked in a training environment dispersed

geographically. DSRV operators in Charleston, South Carolina (where the east coast

DSRV teams are based) could hold networked training sessions with their west coast

counterparts in San Diego, California. This is the type of training leverage which will be

increasingly in demand in an environment of tight budgets and dispersed centers of

specialized expertise.

D. SUMMARY

The DSRV simulator should be networked to achieve its full utility as a distributed

training and simulation environment. The architecture for establishing a network interface

was discussed in this chapter. The operator interface and graphical visualization

capabilities will be discussed in the next chapter.
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VII. INTERFACE AND VISUALIZATION

A. OPERATOR INTERFACE

The DSRV simulator uses the SpaceBall, keyboard and window menus as input

devices. The SpaceBall provides the interface for DSRV maneuvering controls. The

keyboard provides rudimentary control functions for the submarine, control of the ballast

pump on the DSRV, and an escape key to end the simulation. The menus allow the operator

to engage a preset ocean current effect, select the viewpoint for display. and toggle a

reference grid around the DSRV -- useful for gauging DSRV attitude.

Output variables may be viewed through the console window which starts the

simulation.

1. Spaceball

The SpaceBall "Z" transverse input is used for controlling propulsor thrust. The

keyboard "S" key stops the propulsor. The SpaceBall "Z" rotation axis controls propulsor

rotation about the DSRV body "Y" axis (angle of attack, as simulated by a stern plane

control surface). It is the primary cruising attitude control mechanism. The SpaceBall

"Y"axis rotation controls propulsor azimuth rotation (as simulated by a rudder control

surface).

All eight SpaceBall buttons are used to initiate thruster commands. The four end

buttons are used to control the transverse thruster commands. The top two end buttons
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control the forward transverse thruster. The bottom two end buttons control the aft

transverse thrusters.

Transverse Transverse
Thrusters Thrusters

Vertical Thrusters

Figure 19 SpaceBall Button Commands

The middle four SpaceBall buttons control the vertical thrusters. The top two

middle buttons are for commanding the forward and after vertical thrusters to operate in the

negative "Z" body axis (up). The bottom two middle buttons are for commanding the

forward and after vertical thrusters to operate in the positive "Z" body axis (down).

2. Keyboard

The "P'* key energizes the DSRV ballast pump. Using the up and down arrow

increases the ballast pump rate. Pressing the "P" again, stops the ballast pump. The "F" key

operates the DSRV ballast system sea valve. Pressing the up arrow key opens the orifice

wider, effectively increasing the flood rate. Pressing the down arrow key reduces the sea

valve orifice setting and reduces the flood rate into the ballast system.,

The left arrow key and right arrow key command the submarine ordered course

to increase or decrease in ten degree increments. Submarine speed commands are single

step change commands using the "Q" key to command speed to 4 knots, and the "A'* key

to order all stop.
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3. Menus

The menus system allows the operator to select a preset current. It also allows the

operator to disengage or engage the DSRV reference grid. The reference grid provides a

visual reference for the initial attitude of the DSRV. Finally, the menus system allows the

operator to select the desired viewpoint.

All user interface commands are summarized in Table 4:.

Table 4: USER INTERFACE COMMANDS

Interface Function

SpaceBall Forward Increase propulsor RPM

SpaceBall Back Decrease propulsor RPM

Keyboard "S" Key Stop propulsor

SpaceBall Rotate Left Rudder angle causes a turn to the left

SpaceBall Rotate Right Rudder angle causes a turn to the right

SpaceBall Button 1 Forward transverse thruster pushes left

SpaceBall Button 4 Forward transverse thruster pushes right

SpaceBall Button 5 Aft transverse thruster pushes left

SpaceBall Button 8 Aft transverse thruster pushes right

SpaceBall Button 3 Forward vertical thruster pushes up

SpaceBall Button 7 Forward vertical thruster pushes down

SpaceBall Button 2 Aft vertical thruster pushes up

SpaceBall Button 6 Aft vertical thruster pushes down

Keyboard "P" Key Start/stop ballast pump

Keyboard "F" Key Open/shut sea valve

Keyboard Up arrow Increase pump rate or flood rate

Keyboard Down Arrow Decrease pump rate or flood rate

Menu "Toggle Current" Starts/stops a preset ocean current

Menu "Reference Grid Engages/disengages reference grid

Keyboard "Esc" Stop the simulation
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B. VISUALIZATION

The visualization facilities are spartan. The DSRV is defined in a file using the Object

File Format (OFF). It is composed of 108 polygons which were created off line using the

OFF object construction tool. The file encapsulates material, color and polygon definitions.

The results are shown in grey scale image in Figure 20.

Figure 20 DSRV Graphical Object From OFF File

The light model, submarine and reference object (a water tower for maneuvering

reference) are all OFF objects. A reference grid about the DSRV is created by the

SumulationWindow class object using direct SGI draw commands.

C. SUMMARY

The simulator operator interface is very simple. It provides a basic set of controls for

adjusting the DSRV in both cruise and hover modes. Controls are providt-d for the

propulsor, the ballast system and the four thrusters.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

To some extent, the value of this work will not be known until it is extended by other

students. One of the aims has been to use object oriented techniques to develop the DSRV

simulator. While the simulator is a success from the standpoint that it faithfully models and

displays the handling characteristics of the DSRV, the real power of the object oriented

approach is the tacit understanding that software reuse is paramount to the future of

developing complex systems and a greater success awaits the extension of this simulation

software to other submerged vehicles and other simulators.

B. RECOMMENDATIONS

I. Reuseable "Simulator" Base Class

Following the object oriented design, it would be beneficial if the Simulation

class were placed in a class hierarchy where common features of a generic "simulator"

could be factored out. This would aid in the construction of other, non-underwater vehicle

simulators. Such an analysis and design would make the creation of another simulator as

easy as extending (through inheritance) and instantiating a simulation object.

2. Extend Default Class Functionality

The class of basic physics objects have limited functionality. The virtual functions

that are defined use rudimentary models and unsophisticated mathematical methods. A

more functional set of physics objects would be invaluable in modeling increasingly

complex abstractions with relatively little effort.
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3. Encapsulate Constraint Relationships In Classes

Constraint relationships allow physical objects to self-monitor themselves to

ensure they obey well understood rules of behavior. This set of physics objects makes no

pretense of attempting to constrain behavior by following such phenomenon as energy

conservation and constraint conditions. Such an extension to the physics objects would

make their use in modeling real systems much more robust.

4. Interface And Display

The user interface is not well developed. While much effort was expended to

faithfully model the handling characteristics of the DSRV, the user interface is bare bones

and the operator control and display system non-existent. Such an extension to the

simulator could be faithfully constructed using the object oriented analysis and design

techniques used in this simulator.

5. Networked Virtual World

To repeat, the network interface of this simulator is rudimentary but necessary to

show how the interface blends in with the overall simulator architecture. The eventual

networking of the DSRV is where the real practical benefits of the simulator can come to

fruition. It is the eventual goal of an application such as this to be useful in a distributed

training and analysis environment afforded by a networked system.

6. Better Numerical Integration Method

The mathematical model would be well served by the use of a more accurate

numerical integration method. This simulation uses the trapezoid integration method. It

might be appropriate to introduce the fourth order Runge-Kutta numerical method

[McGhee75], for example, although further simulat'on studies will be required to

determine if this is indeed the case.
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7. Collision Detection

Perhaps the weakest part of the simulation is the lack of a collision detection

method. While the DSRV handling characteristics are accurate, the simulation loses its

"-reality" sense when objects may go through one another without stopping. The object

oriented paradigm makes such an extension to the model well bounded and with little

likelihood of introducing unintended side effects in other parts of the simulator

architecture.

C. FINAL REMARKS

Computer simulation is a valuable tool for extending human understanding and

leveraging our resources. The complexity of the problems that are addressed with

computers is growing. Software complexity grows accordingly. Therefore, the analysis.

design and implementations must be closely aligned to get maximum use of our software

tools. This thesis takes the simulation problem domain and applies the tools made possible

by the object oriented design method and the object oriented capabilities of the C++

language. There are many fruitful areas of research and extension which may spring from

this study.
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APPENDIX A

MAIN() PROGRAM

LcsF,,,SRV S.Jmulator.H"

vc:~d main

SW.RuSirmulat'ion D;
_ * ruiati9on()
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APPENDIX B

DSRV SIMULATOR

fliles for this application
Vinclude "Dynamic_Objs.H"
#include "SimulationWindow.H"
;:nclude "SubVehicleObjs.H"

7;DSRVSirnulation.H

class DSRVSimullation{

public:
DSRVSimulationi);
-DSRVSirnulation()

void RunSimulation o;

private:

//simulated objects
DSRV-obj avolon;
Submarine obj thresher;

// window obj
SimulationWindow sim-window;

DSRVSimulation.c

60



#Include <stdio.h>

ainclude <device.h>

files for calls to time clock
ainclude <-sys/types.h.>
ginclude - sys,'t ires. h,
4#Inc-lude <sys,'param.h,>

1files for OFF function calls
uanclude "imaget!ypes.H"
ninclude urdobH-opcodes.H"

-files for this application
ninciuoe "DSRVSimulator.H"
,,'Include "'SimulationVariables.H"

#define LEFT -1
#define RIGHT 1

#define UP --d
#define DOWN 1

' DSRIVSimulation

:SR\VSimulation:: DSRVSirnulation()

// queue the redraw device
qdevice(REDRAW);

'7queue the menubutton (righ-t button)
qdevi1e (MENUBUTTON);

S/use keyboard input signals
qdevice (LEFTARROWKEY);
qdevice (RIGHTARROWKEY);
qdevice (UPARROWKEY);

61



qdevice (DOWNARROWKEY);
qdevice(ESCKEY);
qdevice(PKEY);
qdevice(FKEY);
qdevice(SKEY);

use spaceball device buttons

qdevice(SBBUTl);
qdevice(SBBUT2);
qdevice(SBBUT3);
qdevice(SBBUT4);
qdevice(SBBUT5);
qdevice(SBBUT6);
qdevice(SBBUT7);
qdevice(SBBUT8);

"'/' use spaceball control signals
qdevice(SBTZ);
qdevice(SBTY);
qdevice(SBRY);
qdevice(SBRZ);

/7adjust sensitivity for devices

noise(SBTZ, 10);
noise(SBTY, 10);
noise(SBRY, 10);
noise(SBRZ, 10);

DSRV Simulati~on:: -DSRVSimulation(){}

void DSRV Simulation:: RunSimulation()

avolon. readyOFFjfile ()
thresher.ready-OFF_fileo;

K'send identity of simulated objects to the sim window
sim-window.PassDrawObj (&avolon, &thresher);

iiboolean for primary loop
mnt running = 1;
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ii boolean for operating ballast system
int pumping = 0;
int flooding = 0;

value returned from the event queue
short eventval;

' DSRV rudder angle value
double rudderangle = 0.0;

while(running) (

- check event queue for operator commands
while(qtest())

switch(qread(&eventval))

case MENUBUTTON:

if(event val == 1) {

// send message to window to check menu selection
simwindow.evaluatemenuselection();

}

break;

case RIGHTARROWKEY:

if(event val == 1) {
subl.velocity[X] += 0.1;

subl.velocity[Y] += 0.1;
}

break;

case LEFTARROWKEY:

if(event val == 1) {
subl.velocity[X] - 0.1;
subl.velocity[Y] -= 0.1;

}

break;
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case UPARROWKEY:

/'/ increase ballast pump rate
if (event-val == 1) (
avolon.ballast.change~purnp_rate( (double)evernt- a.ý

break;

case DOWNARROWKEY:

,,/ decrease ballast pump rate
if (event_val == 1) {

avolon.ballast change-pump~rate
(-(double)event-val);

break;

case ESOKEY:

running = 0;

break;

case PKEY:

if (pumping){
avolon.ballast.stop~pump();
pumping = 0;

else{
avolon ballast start~puxnp (
pumping = 1;

break;

case FKEY:

if (flooding){
avolon.ballast.close-sea-valve()
flooding = 0;

else{
avolon.ballast.open sea_valve();
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flooding = 1;

break;

case SKEY:

if (event val == ) avolon.stop~propul sor;
break;

case SBBUTl:

if (event-val 1){
avolon.togglejfwd_transverse-thruster WEFE?)

break;

case SBBUT2:

if (event-val == 1){
avolon.togglejfwd-vertical-thruster (UP);

I
break;

case SBBUT3:

if (event val ==)1)
avolon.toggle~aft_vertica'l_thruster(UP);

break;

case SBBUT4:

if (event-val =1{

avolon.togglejfwd_transverse-thruster(RIGHT);

break;

case SBBUT5:

if (event-vaJ. == 1)
avolon.toggle~aft_transverse-thruster(LEET);

break;
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case SEBUTE:

if (event._val == 1)
avolon.t~ogglejfwd_vertical_tohrust~er(DOWN);

break;

case SBBtJT7:

if (event._val == 1)
avoion.toggie~aft._vertical-t~hruster(DOWN);

break;

case SBBUT8:

if (event-val == 1){
avolon.toggle~aft_transverse-thruster(RIGH?.;

break;

case SBTZ:

avolon. increment~propulsor rpm(double (event._val)
/10000.0);

break;

case SBTY:

break;

case SBRY:

avolon.set-rudder-angie(event._vai / 10000.0);

break;

case SBRZ:

avolon.set._st~ernplane~angle(-event._val CC
break;

case REDRAW:
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reshapeviewpor' ;
break;

default:
break;

/end switch on event queue item
'7 endif qtest()

update the internal state of the simulated objecns
avioon.update();
thresher.update(;

Sdraw 

the environment

simwindow.DrawWindow();

;/ end while()
}; I/ end RunSimulation()
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APPENDIX C

SUB VEHICLE OBJECTS

=include "DynamicObjs.H"
winclude "Window.H'
=include "NetworkInterface.H"

nifndef _SUBVEHICLEOBJS
udefine _SUBVEHICLEOBJS

11Ballast _System

class BallastSystern

public:
Ballast_System ~
BallastSystem(double, double, double, double);
-Ballast_System()

void start~pump C
void stop~pulnp
void change~pwnp_rate (double);
void open_sea-valveC;
void close-sea-valve C
void adjust_sea_valve_orifice (double);
void update_ballast(float);

void set-max-ballast (double);
void set_max~pump~rate (double);
void set-max-flood-rate (double);
void set-current-ballast (double);
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int pump-ison();
int seavalve isopen H;
double get current ballast ;

private:
in,, pumpon;
int seavalve open;
double max ballast;
double max-pump_rate;
double max flood rate;
dcuble current-ballast;
double current~pump rate;

double current-flood-rate;
};

Thruster

S, / ,' 1//

class Thruster {

public:
Thruster();

//' max magnitude, location x, y, z
Thruster (double, double, double, double);
-Thruster();

virtual void startpositive thrust C)
virtual void start negativethrust );
virtual void stop-thruster ()
virtual void changethruster_rate (double);
virtual void update-thruster-force(float);

virtual void setmaxthrust (double);
virtual void set thruster-location (double, double,

double);
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vIrtual void set-thruszer-direction (doubl~e, double,
double);

virtual void, set-screw-efficiency (double)
virtual void set-thruster_rpm Acutlei

virtual ThreeVector get_thrust i
virtual ThreeVector get_torque

protected:
int thrusteron;
double rpm;
double screw_efficiency; //values 0.0. .1.0
double max_thrust;
ThreeVector body-location;
Force thruster-force;
Torque thruster_torque;
ThreeVector absolute-force-vector;
ThreeVector absolute-torque~vector;

Propulsor

class Propulsor public Thruster

public:

-Propulsor ()

void increment~propulsor~rpm (double);
void set..propulsor~rpm (double);
void update_thruster_force (float);
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, , / I i , . . .

SubmarineVehicle

, / /1. -

" ',, , /1 / ' /1 // / ,/ // / 1, / I / I / I/I, / ,' / , . ,

class SubmarineVehicle : public RigidBody,
public OFFDrawable_Obt

public:
SubmarineVehicleC);
SubmarineVehicle(char *)
-SubmarineVehicle C;

void addweight (double);
void addbuoyancy (double);

void setweight (double);
void setbuoyancy (double);
void setseacurrent (double, double, double);

double get-weight H)
double getbuoyancy H;

void readyOFFfile( {OFFDrawableObj::
readyOFFObj );};

protected:

double weight;
double buoyancy;
ThreeVector seacurrent;

"/ network interface stubbs for development
NetworkPlayer networkplayer;
NetworkGhost network_ghost;

I7/
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DSRV_ob]

class DSRV~ob! public SubmarineVehicle

friend class DSRY Simulatim;

public:
DSRV-obj H)
DSRV-objlchar ;

-DSRV..obj ()

void set-rudder-angle (double);
vcid set_sternplane_angle (double);
void increment~propulsor~rpm (double);
void stop~propulsor H;

void toggle_fwd_transverse_tchruster Ant.);
void toggle_aft._transverse_thruster (int);
void toggle_fwd_vertical_thruster Aint);
void toggle_aft_vertical_thruster Aint);

void updat~eo;
void Drawo;
void set..9mage(OBJECT*);
OBJECT* getjimage ()

int. ballast~punp~is~on()
mnt sea-valve-is~openo;

private:

Ballast_System ballast;
Thruster *fwd-vertical_thruster;
Thruster *fwd-transverse-thruster;
Thruster *aft _vertical_thruster;
Thruster *aft-transverse_thruster;
Propulsor *propulsor;

OBJECT *propeller;
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double dr, ds; 7/rudder and stern planes ýrr ,E~

double u, v, w;
double p, c,. r;
double xpos, ypos, zpos;
double phi, theta, pzi;
d:ouble xx[131;
double M["I [7/ 1, Mi ["1 [7;

void invert _matrix (double ~,double *, int)

diouble trapezoid Integratc-40 nt doubie'], dul

Submnarine_obj

c'Iass Submarine-obJ public Submari-neVehicl-e

cubl ic:
Submarine-obj ()
Submarine-obj (char*;
~-Submarine-obt();

void updateo;
vod Draw (L;

vocid set_image(O)BjECT*ý;
JECET* et-imagek);

cr, v&tte:

OBJECT *propeller;
diouble procprot;
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SubVehicleObjs.C

=include ~math.h>-

i:nclude <iostreamn.h,>

#include "SimulationVariables.H"
vinclude "SubVehicleObjs.H"
--include "image~types .H"
i:nclude "rdobjocpcodes .H"

Ballast _System

Ball-astSystemr:: BallastSystem

Ballast_Systemr:: BallastSystem (double max-ball-, dul
-urr bL.L,

double max-purnp, Iue
cmax--flood)

m~a x-ball1.a st = max-balli;
mnax-pump-rate = max-psump;
max-flood-rate = max-flood;

current-ballast = Curr-ball1;

;urrenpump-rate ; tal:1lb
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sea-valve-open =0; /1initially sea_valve i
closed

BallastSystem:: -BallastSysternoV

vcdBall'astSyste: strpump()
pump on 1

void Ballast System:: stop.pm(
pump~on = 0;

vo-d BalllastSystem:: change..pump-rate(double rate)
current-punp-rate += rate;
if (current~pump~rate > max~pulnp~rate) current~punp-rat~e

max~pump~rat e;

Void BallastSystem:: open~sea-valve C
sea-valve..open =1

v~cd BallastSystem:: close-sea_valve C
sea-valve~open = 0;

,.iýd BallastSystem: : adjusse alve orifice (double ratie:

current,-flood-rate *= rate;
if- (current--flood-rate --max-flood-ratie)

current-flood-rate = max-flood-rate;

--c-d Ba2'Aast System:: update bal'ast-f',-at dti
if purnpon) current-ballast -=current-_cump~rate O

ifsea-valve-ocen) current_balllast +- urrent-flozd alr-a

SBallastSyste;-m: : set _max-ball-ast doubie max,
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max-ballast = max;

void Ballast_System:: set-max~pump rate (double max;
max~pump-rate = max;

void Ballast_System: : set-max_flood-rate (double max
max-flood-rate = max;

1;

void Ballast_System:: set-current-ballast (double bali;
if (ball >~ max-ball.ast) current-ballast =max-ballasn;

if (ball < 0.0) current-ballast =0.0;

else current-ballast = ball;

mnt Ballast_System:: pump-is-on()
return pump on;

4,

mnt Ballast_System:: sea_valve_is~open()
return sea-valve_open;

double BallastSystem:: getCurrent_ballast()
return current-ballast;

Thruster

Tbhruster:: Thruster()
tnruster_on = 0;
screw_efficiency = 1.0;
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Thrust~er:: Thruster (double max, double x, double y, double

max-thrust = max;
screw_efficiency = 1.0;
bodyjlocation.x = x
bcdy~location.y = y
tody locati.on .z = z

:hruster:: -Thruster) H};

void Thruster: : start~positive_thrust(){
if (thruster-on ==1) thruster_on = 0;
else thruster-on =1;

void Thruster:: start_negative-thrust C
if (thruster-on ==-1) thruster_on 0;
else thruster-on =-1;

void Thruster:: stop-thruster C
thruster-on =0;

void Thruster:: change_thruster_rate(double r){
rpm += r;

void Thruster:: update_thruster_force(float dA)

thruster-force.set_magnitude(screw_efficiency *rpmt

fabs~rpm) *dt / 60.0);

if (thruster-force.get-magnitude() > max_thrust)
thruster-force.set-magnitude (max_thrust);

if (thruster-force.get~magnitude() -max_thrust'
"triruster_force.set~magnitude (-max-thrust);
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// thruster-on may take values -1., 0, 1 to denote onruster
direct ion

// and operation status
absolute-force-vector.x =thruster_force.get_rnagni::oe

trhruster_force.get componentso).x
*doub..eithrusner-on,;

absolute_force-vector.y = thruster-force.get~magnivt,ý

thruster_torce.get~componentst).y
* doubletthruster-or±n

absolute-force-vector.z = thruster_force.get_rnagni:ude,

thruster-force.get components ) .z
* double(thruster-on);

absolute_torque~vector.x = absolute-force-vector.yv
bodyjlocation.: +

absolute-force-vector.:
bodyjlocat ion .y;
absolute-torque~vector.y = absolute-force_vector.:

bo~y_locanion.x +

absolute-force-vector.x*
body location.:;

absolute_torque vector.z = absolute-force-vector.v
bodyjlocation.x +

absolute-force-vector.x
body~iocat ion .y;

void Thruster:: set -max-thrust (double max){
max_thrust = max;

void Thruster:: set-thruster_location Wdouble x, double y,
double z) {
body_location.x = x
body location.y = y
body_location.: = z
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void Thruster:: setthrusterdirection (double i, double :,
double k) {

thrusterforce.setcomponents (i, j, k);

vcid Thruster:: setscrewefficiency (double cs)
screwefficiency = cs;
if (screwefficiency > 1.0) screwefficiency = 1.0;
if (screwefficiency < 0.0) screwefficiency = 0.0;

void Thruster:: setthruster_rpm(double r) {
rom = r;

ThreeVector Thruster:: get thrust() {
return absoluteforcevector;

ThreeVector Thruster:: gettorque() (
return absolute-torquevector;

/ , / / / /i~ !!////!'1!'/// 77 /' '// '//~/,//I

•/ '/ / /' / /

Propulsor

/ // //

Propulsor:: Propulsor( {};

Propulsor:: -Propulsor() {};

void Propulsor:: incrementpropulsorrpm (double r;
rpm += r;

void Propulsor:: setpropulscr rpm (double r)
rpm = r;
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void Propulsor:: update_thruster_force(float dt){

thruster-force.set magnitude~screw_efficiency rpm
fabs(rpm) * A~ ; 60.0);

//(xprop/20)*(n~rpm*fabs(n~rpmrh

if (thruster-force.get_magninude() > max_thrust)
thruster-force.set-magnitude (max_thrust);

Zt (thruster-force.get_magnitude() < -max_thrust)
thruster-force.set~magnitude (-max_thrust);

''thruster-on may take values -1, 0, 1 to denote thruster
direct ion

t/ and operation status
absolute-force-vector.x = thruster_force.get~magnitude!

thruster_foroe.get_components) .x;
absolute-force-vector.y = thruster_force.get~magnitude(

thruster-force.get~components().y;

absolute-force-vector.z = thruster_force.get-magnitudeý

thruster-force.get~components ().z;

absolute-torque vector.x = absolute_force_vector.y*
bodylocation.z +

absolute-force-vector.: *

bodyjlocat ion .y;
absolute_torque-vector.y = absolute_force_vector.:

body-location.x+
absolute-force_vector.x*

body_location.z;
a±bsoiute_torque vector.z = absolute_force_vector.v *

body_location.x +

absolute-force-vector.x *

body_location.y;

80



SubrarineVehicle

SubmarineVehicle:: SubmarineVehicle
OFFDrawable-Obj ()

SubmarineVehicle:: SubmarineVehicle(char *f)
OFFDrawable-Obl'(f){

SubmarineVehicle:: -SubrnarineVehicle) {H;

void. SubmarineVehicle:: add_weight (double w)
weight *= w

void SubmarineVehicle:: add_buoyancy (double b)
buoyancy += b;

void SubmarineVehicle:: set_weight (double w){
weight = w

void SubmarineVehicle:: set_buoyancy (double b;
buoyancy = b

void SubmarineVehicle:: set-sea-current (double uc, double
vc, double wcY (

sea-current.x = uc;
sea_current.y = vc;
sea-current.z = wc;

double SubmarineVehicle:: get~weight (
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retuin weight;

double SubmarineVehicle:: get _buoyanc-y
return buoyancy;

DSRIVIobj

DSRV_obj : SRV....obj (
SubmarineVehicle("cff-files1'dsrv.off"),
ballast(S00.0, 250.0, 50.0, 50.0){

;:assign initial values from table
ballast is ignored for mass quantity

mass = body..mass;
weight = body..yeight + ballast.get_current_ballast(;
buoyancy = body..boy + ballast.get current-ballast));

// set thruster performance values
fwd-transverse-thruster = new Thruster;
fwd-transverse-thruster->set -max -thrust (400.0);
f':d-transverse-thruster->:set-thruster-locati-on (19.0, 00

0.0);
fwd-transverse-thruster-->set-thruster-direct.ion(0.(.0,

0.0);
fwd-transverse-thruster->set -thruster-rpm (.100.0C);
"f'wd-transverse-thruster-->set-screw-effi-ciency(0.2ýý

aft-transverse-thruster = new Thruster;
aft-transverse_thruster->setý -max-thrust(400.0(;
aft-rtransverse-thruster->set--thruster-locatiý;on -.

0.0, 0.0);
art"ý-transverse-thruster- >set-!tnrust-er-direct-nCC I:

aft1ýtransverse-thruster->setý-thruster rpm (100.0);
aft-transverse_thruster--ý>set screw-efficiency0C.2
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fwd-vertical-thruster = new Thruster;
fwd-vertical-thruster->set-max-thrust(400.0);
fwd-vertical-thruster->set-thruster-locanior. 21.7,G'

0.0);
fwd-vernicai._thruster->set _thruster-direction ýG

fwd-vertical-thruster->set-thruster rpm (110.01
fwd-vertical-thruster->set-screw-efficiency(C.2.j

aft-vertical-thruster = new Thruster;
aft-vertical-thruster-~set -max-thrust(400.0);
art-vertical-thruster->set-thruster-location (-2Z>

aft~vertical~thruster-Žset~thruster~direction>00 20
S.0);
aft-v~:rical-thruster->set-thruster rpm (100.0);
aft _vertical-thruster->set-screw_efficiency(0.2);

propulsor =new Propulsor;
propulsor-~set_max_thrust,89.V 0.75);
propulsor->set _thruster_location (-25.0, 0.0, 0.>ý;
propulsor->set_thruster_direction(l.0, 0.0, 0.P;
propuisor-~-set_thruster..ypm (0.0)
propulsor- *set_screw~efficiency(0.75);

u UO

- vo;

w Wý
p p p0 ;
q = O;
r =r0;

XPOS =XPcS?;

ypos =ypcso;

zpos =zposO;

phi =phiO;

theta =theta0;

psi =psio;

"// set a starting position over and aft of the subtarine
XPOS = -130.0;
:pCO = 850.0;
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in inta' rudder and stern plane angles from -azbe
dr - IErRAD *dr;

ds =DEORAD dr;

assign initial conditions to XX V,,ECTCOR

X L-,. = U

xx[4], = V

xxLS = w

XXIV] = P

xx L 2 = Xpos;
xx(S] ypos;
xx[91 = zpos;
xx[IO] = phi;
x:K.'11] = theta;

xx[2]= psi;

build the mass matrix
M 1, ~ mass - xudot; M[I] [51 rrmasslzg;

M 11 [6] = -mass*yg;

M 22 11[] -mass - yvdot; M[21 F4] = -mass-zg-
ypdot;

M?'2] [O-I mass~xg - y~rdot;

M rL3 ' mass - zwdot; M[31 [4] = mass*-,,g;
M,'3 1'5 -mass*xg -zqdot;

. '[7 2,i mass*zg -kvdot; M[41 [3] = maSs*vg;
M r]41 4 XX- kpdot =

M4 [cJi' -Ixz -krdot;

M[5] [-1] mass*zg; M[L5] [3] -m-ass~xg-

M[L5] 1[4] = -Ixy; M 51 "5 y qc;

M['61 IL -mass*yg; M[6] [2] =Ma~sslx~

M1 '41 -Ixz -npdct; M[6 [51 = -Iv
M[6 6 Izz nrdot;
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// prepare matrix for use by inverting
invert_matrix (&M[01 [01, &Mi: 11[?1 6)

ISR'._Obj: -~DSRVObj (
delete fwd-transverse-thrusner;
delete aft-transverse-thruster;
delete fwd-vertical-thruster;
delete aft-vertical-thruster;
delete propulsor;

delete propeller;

void DSRV-ob4:: set_rudder_angle(double r)N
z1increment rudder angle (in radians)

dr += r;

Nrudder angle limits are +-32 degrees
if (dr < -32.0 *DEGRAD) dr =-DEGRAD *32.0;

if (dr -32.0 * DEGRAD) dr =DEGRAD *32.0;

void DSRV_ob4:: set_sternplane-angle(double s)
/, ncrement stern plane angle (in radians)

ds += s

li stern plane angle limits are +- 28 degrees
if Ads -28.0 *DEGRAD) ds = -DEGRAD *28.0;
if Ads 28.0 * DEGFAD) ds = DESRAD * 28.0;

vcid CSRV-obj:: increment~propulsor~rpm Adcuble Y~
propulscr-vincrement~prcpulsor rpm (r);

void DSRV obj: stop~propulsor (
propulsor->set~propulsor rpm (0.0);



void DSRV-obj': toggle_fwd_transverse_thruster n
directionr.(

if (direction == 1) fwd ':ransverse-tnruster-
,starT~pos~tive_thrust(,;
else fwd-transverse-thruster- -start-negative~t:hrst 1

vsid DSR':_A;b toggle-aft_:rar'smerse-tnruster lir.:
dircton)

i~f direction ,= 1 afo~trarnsverse~thruster-

*s~ar;,posin:avetnrustH

=Ise aft transverse~thruster-ýstart~negataive~trrust,

void DSRV~obj togglIe~fwd~vertical~thruster i int Airect::on

if (drection -= 1) fwd~vertical~thruster-
-start~positive~thrust );
else fwd-vertical-thruster->start~negative_thrustý

void DSRV_obJ toggle-aft_vertical_thruster tint iirectisn

if (direction == 1) aft-vertical-thruster-
-start-posaitive-ohrusto
else aft-vertical-thruster->start~negataivetohrustr'

void DSRV_obj,:: urdate()

determine time interval for numerical intearaticr.
float dt = delta-timeo)

"I. adjust weight for ballast system operation
ballast.uodate_ballast(dt);
weight =body_weight + ballastnget current_ballast

adjust thruster internal states
fwd-transverse_thruster--update_thruster_fore d
aft-transverse_thruster- -upda~e-thruster_force idt
fwd-vertical-thruster-,update thruster_force~dt.
art vertical-thruster- -updaoe7ruster_force Jt*;
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// adjust propulsor state
propulsor->update_thruster-force(dt);

// CALCULATE THE DRAG FORCE, INTEGRATE THE DPAG OVER THE
VEH ICLE

cf-f-ag = 0;
for (int k=1;k<=15;++k)

uct = pow( (v + x_cf[k]*r),2.0) +pow( (w -

xcf11k]*q) ,2.0);
ucrf = sqrt (uc f
if (ucf < 1.0e-6)

cf-flag 1 I;
break;

I

cflow= cdy*hh_cftk]*pow( (v + x~cf(kl*r),2.0)+
cdz*br-cf[k]*pow( (w - x~cf[k]*q),2.0);

vechi [k] = cf low* (v + x-cf (k] *r) /ucf;
vech2 [k] = cf low* (v -x~cf [k] *r) *xcf [k] /ucf ;
vecvl [k] = cf low* (w - x-cf [k] *q) /ucf ;
vecv2[k] = cf low* (w - x~cf [k]*q) *x~cf Jkl/ucf ;

if (cf..flag == 0)

{fhae=taeoditerto(5vclxc)
cf-pheave = trapezoid_integration(15,vecvJ. x_cf);
cfpitch = trapezoid-integration(15,vecv2 x_cf);
cf_sawa = trapezoid integration(15,vechl-,x~cf);

cf-heave = -05*rho*cf-heave;
cf-pitch = 0.5*rho-cf...pitch;
cf-sway = -05*rho*cf-sway;
cf-yaw = -0.5*rho*cf~yaw;

else

o-f-heave = 0.0;
cf-pitch = 0.0;
of_sway = 0.0;
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c f _yaw =0. 0;

/* SURGE FORCE *

sufl= mass* (v*r -w*q +xg* (pow (q,2. 0) +pow (r, 2.) 0)
rnass*(-yg*p*q - zg*p*r) + xpp*pow(p,2.0) + xqq*pow(q,2.O;
+ xrr~pow(r,2.0) + xpr*p*r + xwq~w*q +xvp*v*p + xvr*v~r
- (weight - buoyancy)*sin(theta) - xres*u*fabs(u);
suf2 = u*q*(xqds*ds + xqdb~db) + u*r*(xrdrs*cir);
suf3 = (xdsds*pow(ds,2.0) + xdbdb*pow(db,2.0)

+ xdrdr*(pow(d~r,2.0)))*u*fabs(u);
suf4 = propulsor->get_thrust ().x,

fMl] = sufi + suf2 + suf3 + suf4;

/* SWAY FORCE */'

swfl = mass*(-u*r + w~p - xg*p*q + yg*(pow(p,2.0)+
pow(r,2.0))

- zg*q*r)
+ (weight-buoyancy) *sinj(phi)*cos(theta)
+ ypq*p*q + yqr*q*r + yp*uJ*p + yr*u*r + yvq*v*q + ywp*w*p
+ ywr*w*r + yv*u*v + yvw*v*w + cf-sway;
swf2 =ydrs*u*fabs(u)*dr;
f[2] = swfl + swf2

+ fwd -transverse_thruster->get_thrust().y
+ aft-transverse_thruster->get_thrust().y;

/* HEAVE FORCE */

hfj. = mass*(u*q - v'~p - xg*p*r - yg*q*r + zg*(pow(p,2.0)
+ pow~q,2.0)))

+ (weight - buoyancy)*cos(phi)*cos(theta) + zpp*pow(p,2.0)
+ zpr*p*r

+ zrr*pow(r,2.0) + zq*u*g + zvp~v~p + zvr*v*r + zw*u*w
+zvv*pow(v,2.0) + cf-heave;
hf2 = u*fabs(u) * zds * ds;

f[3] = hfl + hf2
+ fwd-vertical_thruster->get~thrusto).z-
+ aft._vertical-thruster->get thrustoVz;

/1* ROLL MOMENT ~
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rmnJ = -(Izz - Iyy)*q*r - Ixy*p*r + Iyz*(pow(q,2.O)
-pow(r,2.O))..Ixz*p*q

+ rnass*(yg*(u*q - v*p) - zgw(-u*r + w*p))
+ (yg*weight-yb*buoyancy) *cos (phi) *cos(theta)

-(zg*weight-zb*buoyarncy) *sin(phi) *cos(theta)
+kpq*pwq + kqr*q*r + kp*u*p + kr*u*r + kvq*v*q +kwp*w*p

+ kwr*w*r + kv*u*v + kvw*v~w - 1OO.O*p*tabs(p);

f[41 = rml;

SPITCH MOMENT *

pml = -(Ixx - Izz)*p*r + Ixy*q*r - Iyz*p*q

- Ixz*(pow(p,2.O)-pow(r,2.O))
+ mnass*( xg*(-u*q + v*p) + zg*(v*r - w*q)

-(xg*weight -xb*buoyancy) *COS (phi) *cos (theta)
-(zg*weight -zb*buoyancy) *sin (theta)

+ rnpp*pow(p,2.O) + rnpr*p*r + mrr*pow(r,2.O) + mq*u*q +
mvp *v *p

+ invi *v*r + mwu' + mvv*pow(v,2.O) + cf~pitch;
pxn2 = u*fabs(u) * mds*d~s;
ff5] = pml + pm2

+ fwd-vertical-thruster->get..torque().y
+ aft vertical-thruster->get~torque().y;

/* YAW MOMENT */

yrnl = -(Iyy - Ixx)*p*q + Ixy*(pow(p,2.O) - pow(q,2.0))+
Iyz*p*r

- Ixz*q*r
+ mass*(xg*(w*p - u*r) + yg*(w*q-v*r))
+ (xg*weight-xb*buoyancy)*sin(phi)*cos(t-heta)
+ (yg*weight-yb*buoyancy) *sin(theta)
+ flpq*p*q + nqr*q*r + flp*iu*p + nr*u*r + nvq*v*q + flwp*w*p

+ nwr*w*r + nv~u~v + nv~~ + cf~yaw;

ym2 = ndrs*u*fabs(u)*dr;
f[6] = yml + ym2

+ fwd-transverse-thruster->get~torque().z
+ aft-transverse-ýthruster->get~torque().z;

/* INERTIAL POSITION RATES *7

s~phi = sin(phi); s theta = sin(theta); s~psi = sin(psi);
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c...phi =cos(phi); c~theta = cos(theta); c-psi = cOs(Psl);
t-theta = tan(theta);

f [7] sea-current x + u*c~psi*c~theta;
f[f7] = f[7] + v*(c~psi*s_theta*sphI - s~psi*chi

f[7] = f[71 + w*(c...psi*s_theta*c-phi + s~~psi*s~phi);

f [81 = sea-current.y + u~s...psi~c_theta;

f[8] = f[8] v*(s~psi*s_theta*s..phi + c.psi*c~phi);
f[8] = f[8] + ý%*(s~psi*s_theta*c~phi - c~psi~s...ph:j)

f [9] = sea current .z - u~s theta + v~c_theta*s~phi;
f[9] = f[9] + w*c_theta*c..phi;

/* EULER ANGLE RATES */

f[10]= p + q*s~phi*t_theta + r*cjphi*t_theta;

ffll]= q*c~phi - r*s~phi;

f[12]= (1/c_theta)*(q*sjphi + r*c..phi);

/* BUILD STATE MATRIX AND COMPUTE THE RIGHT HAND SIDE OF
XDOT=F (X)

XXDOT = [imm zeros(6,6);zeros(6,6) eye(6,6)]*f' *

for (int j=l;j<=12;++j)

for (k=1;k<=12;++k)

state-matrix[j] [ki = 0.0;

for (j=l;j<=6;++j)

for (k=1;k<=6;++k)

state-matrixfj] ilk] = Mi[j] (k];

for (j=7;j<=12;++j)
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state-rnatrixiijfljl = 1.0;

for (j*=l;j<=12;-i+j)

xxdot[3j] = 0.0;
for (k=l;k<=12;+-.k)

xxdot.[ul = xxdot[j] + state-rratrix[j] [k]*f[k];

for (j=l;j<=12;++j)

xx[j] =xx[j] + dt * xxdot[j];

printf("%f %f %f %f %f %f %f %f \n",xpos, ypos, zpcs,

phi*RADDEG, theta*RADDEG, psi*RADDEG, n~rpm, dr*RADDEG);

// update state values
u = xx[Jj;
v = XX[21;
w = xx[31];
p = XXII41;
q = XX[5];
r = XX[6];
xpos = xxII7];
ypos = xx[8];
zpos = xx[9];
phi = xxI1lO];
theta = xx[ll];
psi = CXx[121 ;

// update state values
vel.x = XxxIii;
vel.y = XX[2];
vel.z = XXfl3];
ang-vel.x = xx[4];
ang~vel.y = xxII5];
ang-vel.z = xx[6];
pos.x = XX[7];
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pos.y = XX[8];
pos. z = CX 191 ;
orient.x = xx[1O];
orient.y = xx~ll];
orient.z = xx[12];

I/ dummy stub to show where network update calls
/7belong.

,/network~player.computeNextState(pos.x, pos.y, pCs.Z);
Hnetwork~ghost .cornputeNextState(dt);

DSRV-obj:: DSRV-obj (char *f)

SubmarineVehicle(f)

void DSRVobj:: Draw()

// draw the DSRV
pushniatrix()

translate(pos.x, pos.y, pos.z);
rot(-90, 'X');
rot(-orient.z*RADDEG, 'Y');
rot(orient.y*RADDEG, 'Z');
rot (orient .x*RADDEG, 'X');
display..this~object (image);

popmatrix0;

mnt DSRV-obj:: ballast~puxnpjs~on()
return ballast.punp~is..on();

mnt DSRV~obj:: sea_valve_is..open()
return ballast.sea_valvejis~open();

' function invert -matrix(a,ai,n):
where a =n x n matrix
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ai= n x n inverse of matrix a
n = row & column dimension of matrix a

Usage:

inv (&a, &ai, n)

Nc:'-"E: Matrices in calling program must be dimensioned

belDWa[n-sl] [n+l] , ai[n-tl] [n+l]. If n > 30 array size

must be increased.

///'void inv(double *a, double *ai, mnt n)
//,vcid inv(double *a[] [7], double *ai[] [7), mnt n)

void DSRV-obj:: invert-matrix(double *a, double *ai, mnt n)

mnt ki;
double b,bl,b2;
double a-local [30] [30] ,ainv[30] [301;

mnt sing...flag = 0;

for~int i=1; i<=n; ++i)

for~int j=1; j<'=n; ++j)

a-local[i][j] = (~*nl+)

for (i=l; i<=n; ++i)

for ( mnt j=l; j<=n; ++j)

ainv[i] [j] = 0.0;

for (i=l; i<=n; ++i)
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ainv[i) [i] =10

for (irit k=l; k<=n-l; ++k)

b =a-local[k][k];

ki k;

for (i=k+l; i<=fl; ++i)

if( (fabs(b) -fabs(a~local[i] Ek] )) >= 0.0

else

b =a-localii][k];

ki i

if( fabs(b) < 0.0001)

singjflag =1;

break;

if( (ki-k) == 0)

else

for (int j=k; j<=n; ++j)

bl = a-local[k][j];
a_local~k] [j] =a-locaifkil [j];
a_local [ki] Li] =bi;

for (j=l; j<=n; ++j)

b2 = ainv[k] [j];
airiv[k] [j] ainv[ki] [ii;
airiv~kil[j] b2;
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for (inc; j<ksI;j=n; ++j) j

a-locaiLk]i](3 = a-local E][il/b;
}-oa~]k*alclk(1

for (j=l; j<=ri; ++j)

ainv[k i]D = ainv~k][i [j]/b; ~1[]*iv~][

for (intkjl; i<=n; ++j)

for (j=Ks-~l; j<=f; ++j)

for (j=1; j<=n; + <=;j)i

ainv~ki(] =j ainv[iILi] - a_local][k(]*ainv[kLi][J;
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}

for(int i=1; i<=n; ÷+i)

for(int j=l; j<=n; +÷j)

"(ai+i*(n+l)+j) = ainv[i][j];

}
}

else
(

//' cout << "Singular or Ill-Conditioned Matrix\n";

// Numerical integration routine using the trapezoidal rule
double DSRVobj:: trapezoid_integration (int n, double a[],
double b[]) {

double outl;

int n1 = n - 1;
double out = 0.0;

for (int i=l; i<=nl; ++i)
{

outl = 0.5*(a[i] + a[i+l])*(b[i+l] b[i]);
out = out + outl;

return out;
}I;

/!/I/ IIIII/// / / II / / / // / / / // / / / // / //// / / /

// Submarineobj
//

Submarineobj:: Submarine_obj()
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SubmarineVehicle(moff-filesirny688.off")
pos.z = 987.0;

Subna'-ine_obj:: Submarine~obj (char *f}
:SuomarirneVehicle(f){

propeller = read-object ("off-files/prop.off");

does propelle~r exist?
if (propeller == (OBJECT *) NULL)

printf("Illegal off file specificat~ion\.i";

Sready~objectjfor~display (propeller),

prop-rot = 0.0;

void DSRV_obj:: setjimage (OBJECT* j){
image = i;

OBJECT* DSRV-obj:: get~image (H
return image;

Submarine_obj:: -Submarine~objo f)
7/delete propeller;

void Submarine-obj:: update(

void Subrnarine~obj:: Draw()

// draw stricken submarine
pushmratrix()

translate(pos.x, pos.y, pos.z);
rot (-90, 'X' );
r~t(orient.z, 'Y');
scale(2.0, 2.0, 2.0);
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display this object (image);
popmatrix()

void. Submar4ine-obDj:: set image (OBJECT* i)
image =1;

OBjECT* Submarine~obj:: get_image (
return image;
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APPENDIX D

DYNAMIC OBJECTS

#ifndef _DYNAMICOBJS
4define _DYNAMICOBJS

#define PI 3.1415927
4define RADDEG 57.29577951
#define DEGRAD 0.017453293

struc!c ThreeVector

double x;
double y;
double z;

};

struct ThreeMatrix

ThreeVector x;
ThreeVector y;
ThreeVector z;

class Motive {

public:
Motive );
Motive(double);
Motive(double, double, double);
-Motive();

virtual void setmagnitude(double);
virtual void setcomponents(double, double,

double);
virtual double get magnitude();
virtual ThreeVector get-components );
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protected:
double mag;
ThreeVector comp;

class Force. public Motive {

public:
Force();
Force(double);
Force(double, double, double);
-Forceo);

void set_magnitude (double);
void set_components (double, double, double);

double get magnitude();
ThreeVector getcomponents );

class Torque: public Motive {

public:
Torque );
Torque(double);
Torque(double, double, double);
-Torque );

void set-magnitude (double);
void setcomponents (double, double, double);
double get magnitude );
ThreeVector get-components );

class PointMass: public Force {

public:
PointMass();
PointMass(double);
PointMass(double, double, double, double);
-PointMass();
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void setmass (double);
void set-position(double, double, double);
void set_velocity(double, double, double);
void setacceleration(double, double, double);

double get-mass H;
ThreeVector getpos ;
ThreeVector getvel ();
ThreeVector getaccel ();
long gettime ();

virtual void fwdkinematics (long) = 0;
virtual void fwd-dynamics (long) = 0;
virtual void reversekinematics () = 0;
virtual void reversedynamics () = 0;
virtual void update () =0;

protected:
double mass;
ThreeVector pos;
ThreeVector vel;
ThreeVector accel;
long time;

float deltatime(;

class RigidBody: public PointMass, public Torque {

public:
RigidBody();
-RigidBody ();

void setinertia (ThreeVector, ThreeVector,
ThreeVector);

void setorient (double, double, double);
void setang_vel (double, double, double);
void setangaccel (double, double, double);

ThreeMatrix get_inertia (;
ThreeVector getorient H;
ThreeVector getang_vel );
ThreeVector getang_accel ()
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virtual void fwdkinematics (long);
virtual void fwd.dynamics (long);
virtual void reversekinematics );
virtual void reversedynamics H;
virtual void updater;

protected:
ThreeMatrix inertia;
ThreeVectororient;
ThreeVectorangvel;
ThreeVector ang_accel;

#endif

//

// Dynamic_Objs.C
/1'

#include <math.h>
#include <iostream.h>
#include <sys/types.h>
#include <sys/times.h>
#include <sys/param.h>
#include "DynamicObjs.H"

#define RADDEG 57.29577951
#define DEGRAD 0.017453293
#define GRAV 9.82

Motive:: Motive() (

mag = 0.0;
comp.x = 0.0; comp.y = 0.0; comp.z = 0.0;

Motive:: Motive(double m)
:mag(m)
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comp.x = 0.0; comp.y = 0.0; comp.z = 0.0;
1;

Motive:: Motive (double a, double b, double c)
rmag(0.0', (

comp.x = a; comp.y = b; comp.z = c;
1;

Motive:: -Motive() {};

void Motive:: setjmagnitude(double m) {
mag = m;

void Motive:: set -components(double a, double b, double c)
comp.x = a; comp.y = b; comp.z = c;

double Motive:: getjmagnitude() {
return mag;

ThreeVector Motive:: getcomponents() {
return comp;

};

Force:: Force()
Motive () {

11;

For( .:: Force(double m)
Motive (m) {

Force::Force(double a, double b, double c)
Motive(a, b, c)

Force::-Force() {};

void Force:: set-magnitude (double m) {
Motive::setmagnitude(m);
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void Force:: setcomponents (double a, double b, double c)
Motive::set-components (a, b, c);

double Force:: getmagnitudeo) {
return mag;

threeVector Force:: getcomponents() {
return comp;

Torque:: Torque() (};

Torque:: Torque(double m)
Motive(m)

Torque:: Torque (double a, double b, double c)
Motive(a, b, c)

Torque::-Torque() {};

void Torque:: set-magnitude (double m) {
Motive::set-magnitude(m);

1;

void Torque:: setcomponents (double a, double b, double c)
{

set_components ,, b, c);

double Torque:: getmagnitude() (
return mag;

ThreeVector Torque:: getcomponents() {
return comp;

PointMass:: PointMass()

104



struct tins time-buff;

mass = 0.0;
pos.x =0.0; pos.y = 0.0; pos.z = 0.0;
vel.x = 0.0; vel.y = 0.0; vel.z = 0.0;
accel.x = 0.0; accel.y = 0.0; accel.z = 0.0;
time = times(&time-buff);

PointMass:: PointMass(double mn){
struct tins time-buff;

mass = M;
pos.x = 0.0; pos.y = 0.0; pos.z = 0.0;
vel.x = 0.0; vel.y = 0.0; vel.z = 0.0;
accel.x = 0.0; accel.y = 0.0; accel.z = 0.0;
time = times(&time-buff);

PointMass:: PointMass(double in,
double px, double py, double pz)

struct tins time-buff;

mass = in;

pos.x = px; pos-y = py; pos.z = pz;
vel.x = 0.0; vel.y = 0.0; vel.z = 0.0;
accel.x = 0.0; accel.y = 0.0; accel.z = 0.0;
time = times(&time-buff);

PointMass:: -PointMass()o

void PointMass:: set_inass(double m){
mass = m;

void PointMass:: set-..position(double px, double py, double
pz)(

pos.x = px;
p05.y = PY;
pos.z = pz;
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void PointMass: : set-velocity (double vx, double vy, double
vz)

vel.x = vx;

vel.y =vy;
vel.z = vz;

void PointMass:: set-acceleration(double ax, double ay,
double az) {
accel.x = ax;
accel.y = ay;
accel.z = az;

double PointMass:: getjnass()
ret-urn mass;

ThreeVector PointMass:: get~pos(){
return pos;

ThreeVector PointMass:: get_vel()
return vel;

ThreeVector PointMass:: get accel(){
return accel;

long PointMass:: get_time()
return time;

float PointMass:: delta-time (
struct tins time-buff;
long temp = time;

time = times (&time_buff);
return C float) (time - temp) /HZ;
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RigidBody:: RigidBodyO)(
orient.x = 0.0; orient..y = 0.0; Orient..z = 0.0;
ang~vel.x = 0.0; ang...el.y = 0.0; arig-vel-z = 0.0;

ang~accel.x = 0.0; ang~accel.y =0.0; ang~accel.z = O.C;

Rigid.Body:: -RigidBody(){}

void RigidBody:: set_iriertia(ThreeVector ix, ThreeVector iy,
:hreeVector iz)

inertia.x = ix;
inertia.y = iy;
inertia.z = iz;

void RigidBody:: set_orient(double ox, double oy, double oz)

orierit.x = ox;
orient.y = oy;
orient.z = oz;

void RigidBody:: set_ang~vel(double vx, double vy, double
vz)

ang~vel.x = vx;
ang~vel.y = vy;
ang~vel.z = z

void RigidBody:: set_ang~accel(double ax, double ay, double
az){
ang-accel.x = ax;
ang~accel.y =ay;
ang-accel.z = az;

ThreeMatrix RigidBody:: getjinertia()
return inertia;

Threevector RigidBody:: get~orient()
ret~Arn orient;
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ThreeVector RigidBody:: get~ang~vel()
return ang~vel;

ThreeVector RigidBody:: get~ang~accel()
return ang~accel;

void RigidBody:: fwd-kinematics(Iong){}

void RigidBody:: fwd~dynarnics(long){}

void RigidBody:: reverse-kinematics(){}

void RigidBody:: reverse_dynarnics(){}

void RigidBody:: update()(}

1 08



APPENDIX E

SIMULATION WINDOW

#include "Window.H"
#include "SubVehicleObjs.H"

enum viewSelect {TOPVIEW, SIDEVIEW, DSRWIEW};
enum boolean {ON, OFF};

class SimulationWindow : public Window {

public:
SimulationWindow (;
-SimulationWindow();

void PassDrawObj(DSRV obj *, Submarine_obj *);

// define inherited functions from class Window
void evaluate-menuselection);
void DrawWindow );

private:
viewSelect viewselection;
boolean selectgrid;

DSRV obj *dsrv;
Submarine.obj *sub;
OBJECT *light obj; // OFF objects
OBJECT *ref-obj;
OBJECT *floor;

// defines variabels for using fogverex comma~ids to
//' simulate obscured underwater vision
static float fog[51;

/,' define inherited functions from class Window
long makethemenus );
void processmenuhit();
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'7SimulationWindow.C

#include <gl.h>
#include "SimulationWindowA-1"
#include "SubVehicleObjs.H"

#define NEARCLIPPING 0.1

#define FAROLIPPING 2000.0

SimulationWindow:: SimulationWindc'()

viewselection = TOPVIEW;
selectgrid = ON;

//topview.set_field_of_view(450);
//topview.set..aspect(l.25);
7/topview.set-polar_view(300.0, 0, 1800, 0);

7/sideview.set-field-of-view(900);
/7sideview.set~aspect(l.25);

/!dsrvview.set-field-of-view (600);
//ds'-vview.set...aspect(l.25);

7/define references for OFF file objects
light obj = read_object ("off_files!

underwaterjlight .off");
ref_obj = read_object ("off_files,'reference.off");
floor = read-object ("off-files/seabottorn.off");

/7OFF function call to prepare/define the visual objects
ready object_for_display (light~obj);
ready~object_for_display (ref_obj);
ready object_for_display (floor);

//make the popup menus for reference
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rnainmenu = makethemenus 0;

SimulationWindow:: -SimulationWindowo M}

void SimulationWindow:: PassDraw~bi (DSRV-obj *d,

Submarine_obj *S){

dsrv = d

sub s;

1;

void SimulationWindow:: evaluate_menu_selection(!

/1' must be in MSINGLE mode to do popup menus
mmode(MSINGLE);

// which popup selection?
hititem = dopup(mainmenu);

/'/ put us back into MVIEWING mode
mmode(MVIEWING);

//do something with the popup hit
processmenuhit ()

void SimulationWindow:: DrawWindow()

// activate selected viewpoint
switch iviewselection)(

case TOPVIEW:

// draw the background color
czclear(0xFFFF7200,getgdesc (GDZMAX))

//must do this in Mviewing
loadmatrix (unit);

"// build the viewing matrix
perspective(450,l.25,NEARCLIPPING,FARCLIPPTNG);
polarview(-300.0, 0, 1800, 0);



// turn off fog when non looking through. dszrv viewpcr,:
fogvertex(FG_OFF, fog);

break;

case SIDEVIEW:

// draw the background color
czclear(OxFFFF7200,getgdesc(GD_ZMAX));

//build the viewing matrix
perspc-itive(900, 1.25,NEARCLIPPING,FARCLIPPING);

/ / must do this in Mviewing
loadmatrix (unit);

lookat(sub->get~pos().x, sub->get~pos().y + 200.0f,
sub->get..pos().z - 50.0f,

sub->get~pos().x, sub->get..pos().y, Sub-
>get~pos( .z - 5 0.Of , 0)

// turn off fog when not looking through dsrv viewport
fogvertex(FG_OFF, fog);

break;

case DSRVVIEW:

/ / draw the background color
czclear(OxFF773333,getgdesc(GD_ZMAX));

// must do this in Mviewing
loadrnatrix (unit);

// build the viewing ma~trix*/
perspective(600, 1.25,NEARCLIPPING,FARCLIPPING);
lookat(dsrv->get~pos().x, dsrv->get~pos().y, dsr7-

>get-pos().z + l0.0f,
dsrv->get..pos().x + 50, dsrv->gptjpos().y, dsrv-

>get-pos().z + 100.0ff,
(short)dsrv->get_orient().z * 10 + 900);

/7turn on underwater visual impairment
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fogvertex (FGVTX-LIN, fog);
fogvertex (FGON, fog);

break;

default:
po-larview(100.0, 0, 0, 0);
break;

if (selectgrid == ON)
RGBcol'or(255, 0,0);
move(dsrv->get..pos().x, dsrv->get..pos().y, dsrv-

draw(dsrv->get~pos().x + 100.0, dsrv->get..pos().y, dsrv-
>get-pos () . z);

RGBcolor(0, 255,0);
move(dsrv->get~pos().x, dsrv->get~pos().y, dsrv-

>get-pos () .z);
draw(dsrv->get..pos().x, dsrv->get...pos().y+ 100.0, dsrv-

>get~pos () . z);
RGBcolor(0, 0, 255);
move(dsrv->get~pos().x, dsrv->get~pcs().y, dsrv-

>get~posoC). z);
draw(dsrv->get~pos().x, dsrv->get~pos().y, dsrv-

>get:_pos().z + 100.0);

/ 'Draw the light
display_this_object(light obj);

/draw the ocean floor
pushmatrix()

translate(0.0, 0.0, 1000.0);
rot(-90, 'X');
scale(10.0, 10.0, 10.0);
display this~object (floor);

Poprnatrix()

7draw the reference
pushmatrix C)

translate(0.0, -200.0, 1000.0);
rot (-90, 'X')
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scale(10.0, 10.C, 10.0);
displaythisobject(refobj);

popmatrix();

// draw the DSRV and submarine
dsrv->Draw();
sub->Draw();

,,' pump and sea valve status
ortho2 (100.0, XMAXSCREEN, 100.0, YMAXSCREEN);
if (dsrv->ballast__pump_is_on()

RGBcolor (255, 0, 0);
cmov2 (20.0, YMAXSCREEN - 10.0);
charstr ("Ballast Pump Running");

}

if (dsrv->seavalve_is_open0) {
RGBcolor (255, 0, 0);
cmov2 (40.0, YMAXSCREEN - 10.0);
charstr ("Sea Valve Open");

}

"/ change out back frame buffer with front frame buffer
swapbuffers();

long SimulationWindow:: makethemenus()

,W this routine performs all the menu construction call

long topmenu; // top level menu's name
long viewmenu; II viewpoint selection menu name
long gridmenu; // reference grid for DSRV
long current-menu; 1/ toggle ocean current

// define low level menus
currentmenu = defpup("Toggle Ocean Current %tI Current ON

%x71 Current OFF %8");
gridmenu defpup("DSRV Refernce Grid %tI Grid ON %x51

Grid OFF %x6");
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viewmenu = defpup(mViewpoint Selection %tI Top View
%x21 Side View %x31 DSRV View %x4");

// define top level menu
topmenu = defpup("DSRV Main Menu %t I Select View %ml

DSRV Reference Grid %mi Toggle Ocean Current %m IPress ESC to
exit %x99"',

view-menu, grid-menu, currentmenu);

return(topmenu);

void SimulationWindow:: processmenuhit() (

switch(hititem) {

case -1:
// no selection, just return
break;

case 1:
break;

case 2:

// Top view viewpoint selection
viewselection = TOPVIEW;
break;

case 3:

// Side view selected
viewselection = SIDEVIEW;
break;

case 4:

// DSRV view selected
viewselection = DSRVVIEW;
break;

case 5:
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// DSRV reference grid set ON
selectgrid = ON;
break;

case 6:

// DSRV reference grid set ON
selectgrid = OFF;
break;

case 7:

// set ocean current velocity vector
1 note: the sub is not affected by current, on bottom!
dsrv->setseacurrent(0.5, 0.5, 0.0);
break;

case 8:

// turn current cff
dsrv->set-seacurrent(0.0, 0.0, 0.0);
break;

case 99:
break;

default:
break;

} // end switch

float SimulationWindow:: fog[] = {110.0, 600.0, 0.21, 0.20,
0.6);
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APPENDIX F

WINDOW

#include <gl.h>
-include "Dynamic_Objs.H"
#include "rdobjopcodes.H"
#include "image_tjpes.H"

#ifndef _WINDOWH
#define _WINDOWH

extern "C"

extern OBJECT* readobject(char*);
extern void readyobject_for display(OBJECT*);
extern void displaythisobject(OBJECT*);

const static Matrix unit = j 1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0 1;

class Window {
public:

Window);
-Window();

void setwindow %itle(char *);
virtual void eveluatemenuselectiono) = 0;
virtual void DrawWindow() = 0;

protected:
char *wintitle;
long win-x-size; // window size in pixels
long win_y_size;
long winxl.pos; // window position in pixels
long winx2_pos;
long winyl__pos;
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long winy2_pos;
long win_x_aspect; /I value 1..32767 (Ox7fff)
long win_.vaspect;
long winnearz; // z-buffer clipping plane values
long win_farz;
long mainmenu; // popup menu's name
long hititem; // the item selected by the menu

virtual long makethemenus H; II sub class redefine to
be meaningfull

virtual void processmenuhit () = 0;

};

class View {

public:
View();
View(unsigned long, long);
-View();

void seteyepoint (long, long, long);
void setlookpoint (long, long, long);
void setrotation (short);
void setfieldofview(short);
void setaspect (double);
void set_clipping (long, long);
void setzbuffer-depth (long);
void setpolar-view(double, short, short, short);

virtual void DrawView );
virtual void DrawPolarView);

protected:

ThreeVector from;
ThreeVector to;
short rotation;
short fieldof-view;
double aspect;
long nearclip; 1/ clipping plane values
long farclip;
long z_depth; // z_buffer depth to clear
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unsigned long color_val; // color value to clear the
screen

double polar-dist;
short polar-azim;
short polar_incline;
short polar-twist;

class DrawableObj

public:
Drawable-Obj C {}
-DrawableObj(){}

virtual void Draw ()0;

class OFFDrawableObj{

public:
OFFDrawableObj ~
OFFDrawableObj (char*)
- OFFDrawable-Obj ();

void readyOFFObj U;
virtual void Draw U

protected:
char *filename;
OBJECT *image;

nendif

i''Window.C
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#include <stdio.h>
#include "Window.H"

extern "C"

extern OBJECT* read object(char*);
extern void readyobject_for_display(OBJECT*);
extern void display-thisobject(OBJECT*);

1;

Window:: Window() {

// set window default values
wintitle = "Window";
win_x_size = XMAXSCREEN - 100; //XMAXSCREEN is a system

variable
win_y_size = YMAXSCREEN - 100;
wln_xl_pos = 100; //window position
win_x2_pos = XMAXSCREEN;
win__yl_pos = 100;
win_y2_pos = YMAXSCREEN;
win_x-aspect = XMAXSCREEN - 100; //window aspect ration
win_y_aspect = YMAXSCREEN - 100;
win_nearz = Ox000000; //near and far planes used

for Zbuffering
winfarz = Ox7fffff;

// set a default window size
prefsize (winx_size, win_y_size);

// set a default window position
prefposition (winxlipos, win x2_pos, winylpos,

winy2_pos);

// set a default aspect window ratio
keepaspect (winx_aspect, win_y_aspect);

// open window with title
winopen (win_title);

// put IRIS in double buffer mode
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doublebufferC);

// put IRIS in RGB mode
RGBmode );

" this call sets the settings established above
gconfig();

// set z-buffering depth
lsetdepth (winnear-z, winfar z);

// set the gouraud shade model. GOURAUD is a gl library
variable

shademodel (GOURAUD);

// enable the new projection matrix. MVIEWING is a gl
library variable

mmode (MVIEWING);

// turn on z-buffering. TRUE is a predefined library
variable

zbuffer (TRUE);

// turn the cursor on
curson();

,'/ make the popup menus
// mainmenu = makethemenus );

hititem = 0;
4;

Window:: -Window() (4;

void Window:: set_windowtitle (char *t) {
*wintitle = *t;

1;

long Window:: makethemenus () {

// this routine is an example of the menu construction

calls

long topmenu; II top level menu's name
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long submenu; // viewpoint selection menu name

// define low level menus
sub-menu = defpup('Sub menu %tI Sub menu selection %xi");

// define top level menu
topmenu = defpup("Main Menu Sample %t I Selection

submenu %mlExit %x99",
sub menu);

return(topmenu);

View:: View()
from.x = 0.0; from.y = 0.0; from.z = 0.0;
to.x = 0.0; to.y = 0.0; to.z = 0.0;
rotation = 0;
fieldofview = 900;
aspect = 1.25;
nearclip = 0.1;
farclip = 2000.0;
z_depth = getgdesc(GD_ZMAX); // get system max z-

buffer depth value
colorval = OxFFFF7200;
polar_dist = 0.0;
polarazim = 0;
polarincline = 0;
polar_twist = 0;

View:: View(unsigned long c, long z) {
from.x = 0.0; from.y = 0.0; from.z = 0.0;
to.x = 0.0; to.y = 0.0; to.z = 0.0;
rotation = 0;
fieldofview = 900;
aspect = 1.25;
near_clip = 0.1;
far_clip = 2000.0;
z-depth = z;
colorval = c;
polar_dist = 0.0;
polar_azim = 0;
polarincline = 0;
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polar_twist = 0;

View:: -View() {;

void View:: seteyepoint (long el, long e2, long e3)
from.x = el; from.y = e2; from.z = e3;

void View:: set lookpoint(long 11, long 12, long 13) {
to.x = 11; to.y = 12; to.z = 13;

void View:: set-rotation (short r)
rotation = r;

void View:: set field of view(short f) {
field of view = f;

void View:: setaspect(double a) {
aspect = a;

void View:: setclipping (long n, long f)
near-clip = n;
far-clip = f;

void View:: set zbuffer depth (long d) {
z-depth = d;

void View:: set-polar view (double d, short a, short i,
short t) (

polardist = d;
polar azim = a;
polar-incline = i;
polar-twist = t;
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void View:: DrawView H) {
czclear (color val, z~depth);
perspective (field of view, aspect, near clilp, far c-1 -p
loadmatrix(unit);
lookat (from.x, from.%,, from.z,

to.x, to.y, to.:, rotation);

:.old View:: DrawPolarView ()H
perspective (field-of-view, aspect, near~clip, far_dliD,
polarview (polar...dist, polar_azim, polar_incline,

polar_twist);

OFFDrawableObj:: OFFDrawableObjo(

OFFDrawableObj:: OFFDrawableObj (char *f){
fillename = f
image = read~object(f);

//does dsrv~obj exist?
if (image == (OBJECT *) NULL)

printf("Illegal off file specificationl\n");
exit (1)

OFFDrawableObj:: -OFF_Drawable_Obj (
,/delete filename;
/dei.ete image;

void OFFDrawableObj:: readyOFFObjo(
ready~object for-display(image);

void OFFDrawableObj:: Draw()

//diSD lay..this~object (image);
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APPENDIX G

NETWORK INTERFACE

.../ • ' ' , / / i i / l t i ' / / / 'i i t l / .. ... ... ...

, This is a sample network class based on tne VERN test-ed
; networking model produced in support of DARPA's STN2ET

by the Department of Computer Sciellue at the University
/, of Central Florida, Orlando.

/~ /These classes are network stubs, only. They have limited
/~ functionality. They are included to show the

architecture
7/ of a network system and to outline the method for
networking
/'/ the DSRV simulator.

/I/ / I

#include "Dy,-namicObjs.H"
#include <math.h>

#ifndef _NETWORKOBJECTS
Sdefine _NETWORKOBJECTS

7 '7//// / / //////////// //'/////// '////'/ /I !1 // I ,/,'; / I I I I I 1 1 1 1 1 1 t 1 1 / 1 / / ,'/77/' / ,

,i , / / /,i

/ e

cls Network_Player
/ /,

,' , 7,/ /

class Network_Player {

public:
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NetworkPlayer();
NetworkPlayer (char vn)

-NetworkPlayer();

void seterrortolerance(double, double, double,;

/ methods which must be implemented for netw rking
interface

void processMsg();

", this method serves two funtiorns
;,' 1) calculate new position and velocity based on

simulation time
/'/'2) update state information of the player ,internal

variables)
void computeNextState(double, double, double);

private:
char *name;
ThreeVector error-tolerance;

J ,

NetworkGhost

class NetworkGhost {
friend NetworkPlayer;

public:
NetworkGhost();
-NetworkGhost"'*

// method which must be implemented for net-7orking
interflce
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// This is the dead reckoning method which will exist
in all

// machines showing this object
// It computes the Ghost's approximate state model
void computeNextState(float);
void update_state() {};

protected:
ThreeVector netposition;
ThreeVector net-velocity;

#endif

/ i

/1 NetworkInterface.C
//

#include "NetworkInterface.H"

//i

1/ NetworkPlayer
//

,'/// / / / / / / / / / / / / / / / / / / / / / / /// ////

NetworkPlayer:: NetworkPlayer( {};

Network-Player:: NetworkPlayer (char *n) {
name = n;

Network-Player:: -NetworkPlayer() {};

void NetworkPlayer:: set error tolerance (double x, double
y, double z) {
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errortolerance.x = x;
errortolerance.y = y;
error tolerance.z = z;

void NetworkPlayer:: computeNextState (double x, double y,
double z) (

// sample comparisons to determine when to update network
ghosts

if ( fabs(x - NetworkGhost::netposition.x) >
errortolerance.x

I I fabs(y - net-position.y) > errortolerance.y
I I fabs(z - netposition.z) > error_tolerance.z) {

send message to local and remote ghosts to update
position

/ /

/1 NetworkGhost
//

NetworkGhost:: NetworkGhost() {};

NetworkGhost:: -NetworkGhost() {};

void Network Ghost:: computeNextState (float dt) {
netposition.x += netvelocity.x * dt;
net position.y += net_velocity.y * dt;
netposition.z += net_velocity.z * dt;

// Use this state information for displaying the object
on

// remote nodes.
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/1 The NetworkPlayer is responsible for monitoring the
// the ghost to determine when threshold errors in
// position are reached.
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